Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T07:00:32.890Z Has data issue: false hasContentIssue false

Products and Kinetics of Flash Pyrolysis of Peg: A Minimum Smoke Binder

Published online by Cambridge University Press:  10 February 2011

H. Arisawa
Affiliation:
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
T. B. Brill
Affiliation:
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
Get access

Abstract

Flash pyrolysis of polyethyleneglycol by T-Jump/FTIR spectroscopy to temperatures of the surface during combustion reveals that volatile products arise from approximately equal amounts of C-O and C-C homolysis. Nine volatile products are discussed. The average number of repeating units in the volatile oligomers is 2.5. A shift in product distribution occurs at 420–480°C resulting from a change in the polymer structure. Below 420°C, di- and mono-ether oligomers and diethyleneglycol dominate. Above 480°C, the mono-ethers and ethyleneglycol dominate. The Arrhenius constants for decomposition reflect this difference: Ea=8.8 kcal mol−1, In (A, s−1) =2.0 at 370–420°C and Ea=19 kcal mol−1, In (A, s−1)=10 at 480–550°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Madorsky, S. L. and Straus, S., J. Polym. Sci. 36, p. 183(1959).Google Scholar
2. Lattimer, R. P., Münster, H. and Budzikiewicz, H., Int. J. Mass. Spectrom. Ion. Processes, 90, p. 119(1989).Google Scholar
3. Fares, M. M., Hacaloglu, J. and Suzer, S., Eur. Polym. J., 30, p. 845(1994).Google Scholar
4. Ishikawa, M., The Bulletin of Aichi Univ. of Education, 19(Natural Science), p. 19(1970).Google Scholar
5. Blyumenfel'd, A. B. and Kovarskaya, B. M., Vysokomol. soyed., A12, p. 633(1970).Google Scholar
6. Grassie, N. and Mendoza, G. A. Perdomo, Polym. Deg. Stab. 9, p. 155(1984).Google Scholar
7. Cameron, G. G., Ingram, M. D., Qureshi, M. Younus and Gearing, H. M., Eur. Polym. J., 25, p. 779(1989).Google Scholar
8. Voorhees, K. J., Baugh, S. F. and Stevenson, D. N., J. Anal. Appl. Pyrolysis, 30, p. 47(1994).Google Scholar
9. Audebert, R. and Aubineau, C., Eur. Polym. J., 6, p. 965(1970).Google Scholar
10. Calahorra, E., Cortazar, M. and Guzmán, G. M., J. Polym. Sci. Polym. Lett. Ed., 23, p. 257(1985).Google Scholar
11. Brill, T. B., Brush, P. J., James, K. J., Shepherd, J. E. and Pfeiffer, K. J., Appl. Spectrosc., 46, p. 900 (1992).Google Scholar
12. Arisawa, H. and Brill, T. B., Combust. Flame, to be published.Google Scholar
13. Shepherd, J. E. and Brill, T. B., 10th Symposium on Detonation, Office of Naval Research, Arlington VA, p.849(1993)Google Scholar
14. Geladi, P. and Kowalski, B. R., Anal. Chim. Acta, 185, p.1(1986).Google Scholar
15. Wise, B. M., PLS Toolbox for use with MATLAB®, 1415 Wright Avenue, Richland, WA 99352.Google Scholar
16. Beebe, K. R. and Kowalski, B. R., Anal. Chem., 59, p.1007A(1987).Google Scholar
17. Grace, A., Optimization toolbox for use with MATLAB®, The MathWorks, Inc., 1994.Google Scholar