Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T17:46:59.087Z Has data issue: false hasContentIssue false

Processing iron aluminides by heavy deformation for improved room temperature strength-ductility and for high temperature creep strength

Published online by Cambridge University Press:  14 January 2011

David G. Morris
Affiliation:
Department of Physical Metallurgy, CENIM, CSIC, Avenida Gregorio del Amo 8, 28040 Madrid, Spain
Maria Antonia Muñoz-Morris
Affiliation:
Department of Physical Metallurgy, CENIM, CSIC, Avenida Gregorio del Amo 8, 28040 Madrid, Spain
Get access

Abstract

Iron aluminides show many interesting properties, but still show relatively poor ductility at room temperature and only moderate creep resistance at temperatures above about 600ºC. Processes of severe plastic deformation have been investigated for a wide range of ductile alloys over the past decade, but have hardly been considered for intermetallics. This presentation discusses two studies aimed at refining microstructure by the use of severe plastic deformation of iron aluminides. The first considers processing Fe3Al by heavy cold rolling, followed by annealing for recovery or recrystallization, with an objective of refining grain size to improve strength at the same time as ductility. The high strength and poor ductility of the work hardened material leads to a danger of cracking during rolling, which is a problem for manufacturing large quantities of healthy material. Suitable rolling and recovery treatments can, nevertheless, lead to strong materials with some plastic ductility. A different technique of multidirectional, high-strain and high-temperature forging applied to a boride-containing Fe3Al alloy produces a material with large grain size and refined dispersion of boride particles. These particles lead to a considerable increase in creep strength under conditions of moderate stresses at temperatures around 700ºC. This high-strain forging technique can be seen as an intermediate processing method between conventional wrought metallurgy and mechanical-alloying powder metallurgy. This technique offers the possibility to improve high temperature behaviour of such intermetallics containing second-phase dispersions, and can be scaled to produce large quantities of high-quality material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Valiev, R.Z. and Langdon, T.G., Progress in Mater. Sci., 51, 881 (2006).Google Scholar
2. McKamey, C.G., DeVan, J.H., Tortorelli, P.F. and Sikka, V.K., J. Mater. Res., 6, 1779 (1991).Google Scholar
3. Cochran, J.W., Lin, Y., Zee, R.H. and George, E.P., Acta Mater., 17, 6245 (1998).Google Scholar
4. Baker, I. and Munroe, P.R., Int. Mater. Rev., 42, 181 (1997).Google Scholar
5. Pint, B.A., Leibowitz, J. and DeVan, J.H., Oxid. Met., 51, 181 (1999).Google Scholar
6. Morris, D.G. and Morris-Muñoz, M.A., Intermetallics, 7, 1121 (1999).Google Scholar
7. Chao, J., Morris, D.G., Muñoz-Morris, M.A. and Gonzalez-Carrasco, J.L., Intermetallics, 9, 299 (2001).Google Scholar
8. Morris, D.G., Intermetallics, 6, 753 (1998).Google Scholar
9. Morris, D.G., Muñoz-Morris, M.A. and Chao, J., Intermetallics, 12, 821 (2004).Google Scholar
10. Baker, I., Nagpal, P., Liu, F. and Munroe, P.R., Acta Metall. Mater., 39, 1637 (1991).Google Scholar
11. Pang, L., Han, S.M. and Kumar, K.S., Acta Mater., 50, 3623 (2002).Google Scholar
12. Gaydosh, D.J., Draper, S.L. and Nathal, M.V., Metall. Trans., 20A, 1701 (1989).Google Scholar
13. Sleboda, T., Kane, J., Wright, R.N., Stoloff, N.S. and Duquette, D.J., Mater. Sci. Eng., 368A, 332 (2004).Google Scholar
14. Revol, S., Launois, S., Baccino, R., Sire, P., Giraud, Y., and Sereni, S., Proc. Conf EUROPM 2001, 22-24 Oct. 2001, Nice, France, EMPA, Shrewsbury, vol. 1, p22.Google Scholar
15. Morris, D.G. and Gunther, S., Mater. Sci. Eng., A208, 7 (1996).Google Scholar
16. McKamey, C.G. and Pierce, D.H., Scripta Metall. et Mater. 28, 1173 (1993).Google Scholar
17. Morris, D.G. and Gunther, S., Intermetallics, 3, 483 (1995).Google Scholar
18. Huang, Y.D. and Froyen, L., Intermetallics 10, 473 (2002).Google Scholar
19. Blackford, J.R., Höchrainer, P., Buckley, R.A., Jones, H. and Sellars, C.M., Scripta Mater. 51, 79 (2004).Google Scholar
20. Morris, D.G. and Leboeuf, M., Acta Metall. Mater. 42, 1817 (1994).Google Scholar
21. Morris, D.G., Gutierrez-Urrutia, I. and Muñoz-Morris, M.A., J. Mater. Sci. 43, 7438 (2008).Google Scholar
22. Morris, D.G., Muñoz-Morris, M.A. and Gutierrez-Urrutia, I., Mater. Sci. Eng. A528, 143 (2010).Google Scholar
23. Dadras, M.M. and Morris, D.G., Scripta Metall. Mater. 28, 1245 (1993).Google Scholar
24. Kim, S.M. and Morris, D.G., Acta Mater. 46, 2587 (1998).Google Scholar
25. Raabe, D. and Mao, W., Phil. Mag. 71A, 805 (1995).Google Scholar
26. Raabe, D. and Keichel, J., Mater. Sci. Eng. A203, 208 (1995).Google Scholar
27. Raabe, D. and Keichel, J., J. Mater. Res. 11, 1694 (1996).Google Scholar
28. Raabe, D., Acta Mater. 44, 937 (1996).Google Scholar
29. Raabe, D., Keichel, J. and Gottstein, G., Acta Mater. 45, 2839 (1997).Google Scholar
30. Kobayashi, S., Zaefferer, S., Schneider, A., Raabe, D. and Frommeyer, G., Mater. Sci. Eng. A387-389, 950 (2004).Google Scholar
31. Zhilyaev, A.P. and Langdon, T.G., Progress in Mater. Sci., 53, 893 (2008).Google Scholar
32. McKamey, C.G., Maziasz, P.J. and Jones, J.W., J. Mater. Res., 7, 2089 (1992).Google Scholar
33. Zhang, W.J., Sundar, R.S. and Deevi, S.C., Intermetallics, 12, 893 (2004).Google Scholar
34. Falat, L., Schneider, A., Sauthoff, G., and Frommeyer, G., Intermetallics, 13, 1256 (2005).Google Scholar
35. Morris, D.G., Muñoz-Morris, M.A., Gutierrez-Urrutia, I., and Requejo, L.M., Intermetallics, 17, 404 (2009).Google Scholar
36. Krein, R., Schneider, A., Sauthoff, G., and Frommeyer, G., Intermetallics, 15, 1172 (2007).Google Scholar
37. Morris, D.G., Muñoz-Morris, M.A., and Baudin, C., Acta Mater, 52, 2827(2004).Google Scholar
38. Morris, D.G., Muñoz-Morris, M.A., and Requejo, L.M., Acta Mater, 54, 2335(2006).Google Scholar
39. Hanus, P., Bartsch, E., Palm, M., Krein, R., Bauer-Partenheimer, K., and Janschek, P., Intermetallics, 18, 1379 (2010).Google Scholar
40. Eumann, M., Palm, M., and Sauthoff, G., Intermetallics, 12, 625 (2004).Google Scholar
41. Kratochvil, P., Pesicka, J., Halk, J., Vlasak, T., and Hanus, P., J Alloys and Comp, 378, 258 (2004).Google Scholar
42. Stein, F., Palm, M., and Sauthoff, G., Intermetallics, 13, 1275 (2005).Google Scholar
43. Risanti, D.D. and Sauthoff, G., Intermetallics, 13, 1313 (2005).Google Scholar
44. Kratochvil, P., Malek, P., Cieslar, M., Hanus, P., Hakl, J., and Vlasak, T., Intermetallics, 15, 333 (2007).Google Scholar
45. Dobes, F., Scripta Mater, 59, 59 (2008).Google Scholar
46. Kratochvíl, P., Vodičková, V., Hakl, J., Vlasák, T., Hanus, P., and Pešička, J., Intermetallics, 18, 1365 (2010).Google Scholar
47. Palm, M. and Sauthoff, G., Intermetallics, 12, 1345 (2004).Google Scholar
48. Jung, I., and Sauthoff, G., Z. Metallkde, 7, 484 (1989).Google Scholar
49. Stallybrass, C., Schneider, A., and Sauthoff, G., Intermetallics, 13, 1263 (2005).Google Scholar
50. Zeumer, B., Sanders, W., and Sauthoff, G., Intermetallics, 7, 889 (1999).Google Scholar
51. Morris, D.G., Gutierrez-Urrutia, I., and Muñoz-Morris, M.A., Int. J. of Plasticity, 24, 1205 (2008).Google Scholar
52. Wright, R.N., Anderson, M.T., and Wright, J.K., Mater. Sci. Eng., 258A, 285 (1998).Google Scholar
53. Morris, D.G., Peguiron, D., and Nazmy, M., Philos. Mag., 71A, 441 (1995).Google Scholar
54. Morris, D.G. and Muñoz-Morris, M.A., Acta Mater., 58, 6080 (2010).Google Scholar
55. Kratochvil, P., Pesicka, P.J., Hakl, J., Vlasak, T., and Hanus, P., J. Alloy Compd., 378, 258 (2004).Google Scholar
56. Kratochvil, P., Malek, P., Pesicka, J., Hakl, J., Vlasak, T., and Hanus, P., Kovove Mater., 44, 185 (2006).Google Scholar
57. Morris, D.G., Gutierrez-Urrutia, I., and Muñoz-Morris, M.A., Scripta Mater., 57, 449 (2007).Google Scholar