Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:31:41.986Z Has data issue: false hasContentIssue false

Poly-Si Thin Film Formation Using a Novel Low Thermal Budget Process

Published online by Cambridge University Press:  20 June 2011

Minghao Zhu
Affiliation:
Thin Film Nano & Microelectronics Research Laboratory, Texas A&M University, College Station, TX 77843-3122, U.S.A.
Yue Kuo
Affiliation:
Thin Film Nano & Microelectronics Research Laboratory, Texas A&M University, College Station, TX 77843-3122, U.S.A.
Chen-Han Lin
Affiliation:
Thin Film Nano & Microelectronics Research Laboratory, Texas A&M University, College Station, TX 77843-3122, U.S.A.
Qi Wang
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401, U.S.A.
Get access

Abstract

Polycrystalline silicon thin films were formed from the amorphous silicon thin film by the pulsed rapid thermal annealing process enhanced with a thin nickel seed layer through the vertical crystallization mechanism. In this paper, authors presented the results on the material properties of the crystallized film. The dopant and film thickness effects were also investigated. It has been demonstrated that a 2 μm thick amorphous silicon n+-i-p+ diode structure could be transformed into polycrystalline stack with a 4-pulse 1 sec 850°C heating and 5 sec cooling cycle process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuo, Y., Lin, C.-H. and Zhu, M., Conf. Rec. IEEE Photovoltaic Spec. Conf. 36983701 (2010)Google Scholar
2. van Sark, W. G. J. H. M., Brandsen, G. W., Fleuster, M. and Hekkert, M. P., Energ. Policy 35, 31213125 (2007)10.1016/j.enpol.2006.12.017Google Scholar
3. Schropp, R. E. I., Franken, R. H., Goldbach, H. D., Houweling, Z. S., Li, H., Rath, J. K., Schüttauf, J. W. A., Stolk, R. L., Verlaan, V. and van der Welf, C. H. M., Thin Solid Films 516, 496499 (2008)10.1016/j.tsf.2007.06.052Google Scholar
4. Hwang, J.-D, Chi, T.-Y., Liu, J.-C, Kung, C.-Y and Hsein, I.-C, Jpn. J. Appl. Phys. 45, 7675-7676 (2006)10.1143/JJAP.45.7675Google Scholar
5. Nickel, N. H., Jackson, W. B. and Walker, J., Phys. Rev. B 53, 77507761 (1996)10.1103/PhysRevB.53.7750Google Scholar
6. Matsuyama, T., Terada, N., Baba, T., Sawada, T., Tsuge, S., Wakisaka, K. and Tsuda, S., J. Non-Cryst. Solids 198-200, 940944 (1996)10.1016/0022-3093(96)00091-9Google Scholar
7. Lee, S.-W. and Joo, S.-K., IEEE T. Electron Dev. 17, 160162 (1996)Google Scholar
8. Terai, F., Kobayashi, H., Katsui, S., Sato, Y., Nagatomo, T. and Homma, T., Jpn. J. Appl. Phys. 44, 125130 (2005)10.1143/JJAP.44.125Google Scholar
9. Matsuyama, T., Baba, T., Takahama, T., Tsuda, S. and Nakano, S., Sol. Energy Mater. Sol. Cells 34, 285289 (1994)10.1016/0927-0248(94)90052-3Google Scholar
10. Yoon, S. Y., Kim, S. K., Oh, J. Y., Choi, Y. J., Shon, W. S., Kim, C. O. and Jang, J., Jpn. J. Appl. Phys. 37, 71937197 (1998)Google Scholar
11. Kuo, Y. and Kozlowski, P. M., Appl. Phys. Lett. 69, 10921094 (1996)10.1063/1.117068Google Scholar
12. Galyayries, A., Wisniewski, S. and Grimblot, J., J. Electron Spectrosc. Relat. Phenom. 87, 3144 (1997)10.1016/S0368-2048(97)00071-6Google Scholar
13. Patterson, A. L., Phys. Rev. 56, 978982 (1939)10.1103/PhysRev.56.978Google Scholar
14. Huang, W., Zhang, L., Gao, Y. and Jin, H., Microelectron. Eng. 84, 678683 (2007)10.1016/j.mee.2006.11.006Google Scholar
15. Vepřek, S. and Iqbal, Z., J.Phys. C 15 377392 (1982)Google Scholar
16. Vepřek, S., Iqbal, Z. and Sarott, F. -A., Philos Mag. B 45, 137-145 (1982)10.1080/13642818208246392Google Scholar
17. He, Y., Yin, C., Cheng, G., Wang, L., Liu, X. and Hu, G. Y., J. Appl. Phys. 75, 797803 (1994)10.1063/1.356432Google Scholar
18. Vepřek, S., Sarott, F. –A. and Iqbal, Z., Phys. Rev. B 36, 33443350 (1987)10.1103/PhysRevB.36.3344Google Scholar
19. Yue, G., Lorentzen, J. D., Lin, J., Han, D. and Wang, Q., Appl. Phys. Lett. 75, 492494 (1999)10.1063/1.124426Google Scholar
20. Han, D., Lorentzen, J. D., Weinberg-Wolf, J., McNeil, L. E. and Wang, Q., Appl. Phys. Lett. 94, 29302936 (2003)Google Scholar
21. Bustarret, E., Hachicha, M. A. and Brunel, M., Appl. Phys. Lett. 52, 16751677 (1988)10.1063/1.99054Google Scholar
22. Byun, C.-W., Lee, Y.-W., Park, J.-H., Seok, C.-K., Kim, Y.-S. and Joo, S.-K., Electron. Mater. Lett. 4, 7983 (2008)Google Scholar
23. Kim, H.-Y., Choi, J.-B. and Lee, J.-Y., J. Vac. Sci. Technol. A 17, 32403245 (1999)Google Scholar
24. Woodyard, J. R. and Bowen, D. R., J. Appl. Phys. 57, 22432248 (1985)10.1063/1.334369Google Scholar
25. Johnson, B. C., Caradonna, P. and McCallum, J. C., Mater. Sci. Eng. B 157, 610 (2009)10.1016/j.mseb.2008.11.047Google Scholar
26. Hwang, J.-D, Chang, J.-Y. and Wu, C.-Y., Appl. Surf. Sci. 249, 6570 (2005)Google Scholar
27. Ma, T. and Wong, M., J. Appl. Phys. 91, 12361241 (2002)10.1063/1.1430531Google Scholar
28. Chang, T.-K., Lin, C.-W, Chang, Y.-H, Tseng, C.-H., Chu, F.-T., Cheng, H.-C and Chou, L.-J., J. Electrochem. Soc. 150, G494G497 (2003)10.1149/1.1590996Google Scholar