Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T09:11:59.971Z Has data issue: false hasContentIssue false

Piezopolymer Diaphragm as high performance biosensor platform

Published online by Cambridge University Press:  01 February 2011

Z.-Y. Cheng
Affiliation:
[email protected], Auburn University, Materials Research and Education Center, 201 Ross Hall, Auburn, AL, 36849-5341, United States, 334-844-4913, 334-844-3400
Suiqiong Li
Affiliation:
[email protected], Auburn University, Materials Research and Education Center
Zhuo Xu
Affiliation:
[email protected], Xian Jiaotong University, EMRL, China, People's Republic of
Z.-Y. Cheng
Affiliation:
[email protected], Auburn University, Materials Research and Education Center, United States
Get access

Abstract

Piezopolymer PVDF and P(VDF-TrFE) based diaphragms were fabricated. The diaphragm can be used as a high performance sensor platform for employing in liquid. The microelectronic process for fabricating microdiaphragm and its array is established. The performance of the PVDF based diaphragm in air and liquid was tested. It is found that the diaphragm works well in liquid.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Leonard, P., Hearty, S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T., and O'Kennedy, R., Enzyme and Microbial Tech. 32, 3 (2003).Google Scholar
2. Tamarin, O., Dejous, C., Rebiere, D., Pistre, J., Comeau, S., Moynet, D., and Bezian, J., Sens. Actuators B 91, 275 (2003).Google Scholar
3. Raiteri, R., Grattarola, M., Butt, H., and Skladal, P., Sens. Actuators B 79, 115 (2001).Google Scholar
4. Petrenko, V.A., and Vodyanoy, V.J., and Microbio, J.. Meth. 53(20), 243 (2003).Google Scholar
5. Lavrik, N.V., Sepaniak, M.J., and Datskos, P.G., Rev. Sci. Instrum. 75, 2229 (2004).Google Scholar
6. Mertz, J., Marti, O., and Mlynek, J., Appl. Phys. Lett. 62, 2344, (1993).Google Scholar
7. Mehta, A., Cherian, S., Hedden, D., and Thundat, T., Appl. Phys. Lett. 78, 637 (2001).Google Scholar
8. Ilic, B., Czaplewsli, D., Craighead, H. G., Neuzil, P., Campagnolo, C., and Batt, C., Appl. Phys. Lett. 77, 450 (2000).Google Scholar
9. Ilic, B., Craighead, H.G., Krylov, S., Senaratne, W., Ober, C., and Neuzil, P., J. Appl. Phys. 95, 3694 (2004).Google Scholar
10. Ziegler, C., Anal Bioanal. Chem. 379, 946 (2004).Google Scholar
11. Yi, J.W., Shih, W.Y., and Shih, W. H., J. Appl. Phys. 91, 1680 (2002).Google Scholar
12. Campbell, G.A. and Mutharasan, R., Sens. Actuators A 122, 326 (2005).Google Scholar
13. Li, Z.M., Li, S.Q., and Cheng, Z.-Y., MRS Symposium Proc. Vol. 855E, W3.26.1 (2004).Google Scholar
14. Lakin, K.M., Proc. of 1999 IEEE Ultrasonics Symp. Vol. 2, 895906.Google Scholar
15. Lobl, H.P. et al. , Proc. of 2001 IEEE Ultrasonics Symp. Vol. 1, 807811.Google Scholar
16. Dubois, M.-A. and Muralt, P., Appl. Phys. Lett. 74 (20), 30323034 (1999).Google Scholar