Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T10:42:27.611Z Has data issue: false hasContentIssue false

Photonic Crystal Back Reflectors for Enhanced Absorption in Amorphous Silicon Solar Cells

Published online by Cambridge University Press:  01 February 2011

Benjamin Curtin
Affiliation:
[email protected], Iowa State University, 1Microelectronics Research Center; Dept. of Electrical and Computer Engineering,, Ames, Iowa, United States
Rana Biswas
Affiliation:
[email protected], Iowa State University, Physics & Astronomy; Microelectronics Research Center, Ames Laboratory, Electrical & Computer Engineering, Ames, Iowa, 50011, United States, 515-294-6987, 515-294-0689
Vikram Dalal
Affiliation:
[email protected], Iowa State University, Electrical and Computer Engr., Coover Hall, Ames, Iowa, 50011, United States, 5152941077
Get access

Abstract

Photonic crystal back reflectors offer enhanced optical absorption in thin-film solar cells, without undesirable losses. Rigorous simulations of photonic crystal back reflectors predicted maximized light absorption in amorphous silicon solar cells for a pitch of 700-800 nm. Simulations also predict that for typical 250 nm i-layer cells, the periodic photonic crystal back reflector can improve absorption over the ideal randomly roughened back reflector (or the ‘4n2 classical limit') at wavelengths near the band edge. The PC back reflector provides even higher enhancement than roughened back reflectors for cells with even thinner i-layers. Using these simulated designs, we fabricated metallic photonic crystal back reflectors with different etch depths and i-layer thicknesses. The photonic crystals had a pitch of 760 nm and triangular lattice symmetry. The average light absorption increased with the PC back reflectors, but the greatest improvement (7-8%) in short circuit current was found for thinner i-layers. We have studied the dependence of cell performance on the etch depth of the photonic crystal. The photonic crystal back reflector strongly diffracts light and increases optical path lengths of solar photons.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ferlauto, A.S., Ferreira, G. M., Pearce, J. M., Wronski, C. R., Collins, R. W., Deng, X., Ganguly, G., J. Appl. Phys. 92, 2424 (2002).Google Scholar
2 Zhou, D. and Biswas, R., J. Appl. Phys. 103, 093102 (2008).Google Scholar
3 Zeng, L. et al, Appl. Phys. Lett. 93, 221105 (2008).Google Scholar
4 Bermel, P., Luo, C., Zeng, L., Kimerling, L.C., Joannopoulos, J., Opt. Exp, 15, 16986, (2007).Google Scholar
5 Yan, B., Owens, J. M., Jiang, C., Yang, J. and Guha, S., Mater. Res. Soc. Symp. Proc. 862, A23.3.1 (2005).Google Scholar
6 Springer, J., Poruba, A., Mullerova, L., Vanecek, M., Kluth, O. and Rech, B., J. Appl. Phys. 95, 1427 (2004).Google Scholar
7 Dahal, L. R., Sainju, D., Li, J., Stoke, J. A., Podraza, N., Deng, X., and Collins, R. W., 33rd IEEE Photovoltaic Specialists Conference, 2008. PVSC 2008, pg.16.Google Scholar
8 Yablonovitch, E., J. Opt. Soc. Am. 72, 899 (1982).Google Scholar
9 Nelson, J., The Physics of Solar Cells, (Imperial College Press, London, 2003), p. 279.Google Scholar
10 Sheng, P., Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, (Academic Press, Boston, 1995).Google Scholar
11 Catchpole, K., Green, M., J. Appl. Phys. 101, 063105 (2007).Google Scholar
12 Biswas, R., Ding, C.G., Puscasu, I., Pralle, M., McNeal, M., Daly, J., Greenwald, A. and Johnson, E., Phys. Rev. B. 74, 045107 (2006).Google Scholar
13 Yang, J., Yan, B., Yue, G., and Guha, S., Mater. Res. Soc. Symp. Proc. 1153, A13.02 (2009).Google Scholar
14 Pattnaik, S., Biswas, R., Chakravarty, N., Jin, J., Kaufman, L., Dalal, V., IEEE PVSC (2010).Google Scholar
15 Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Schropp, R. E. I., Atwater, H. A., and Polman, A., Appl. Phys. Lett. 95, 183503 (2009).Google Scholar