Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T03:43:29.167Z Has data issue: false hasContentIssue false

PbS Nanoparticles: Synthesis, Supercritical Fluid Deposition, and Optical Studies

Published online by Cambridge University Press:  17 April 2012

Joanna S. Wang
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright Patterson AFB, OH 45433-7707, USA
Bruno Ullrich
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright Patterson AFB, OH 45433-7707, USA Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México C.P. 62210
Gail J. Brown
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright Patterson AFB, OH 45433-7707, USA
Get access

Abstract

Lead sulfide (PbS) nanoparticles (NPs) of different sizes (2.0 nm - 14.4 nm) have been synthesized in our laboratory. By using those NPs, we formed colloidal films on glass and GaAs substrates employing a specialized supercritical fluid CO2 (sc-CO2) deposition method. The deposited films contain only the PbS NPs and the protecting group of oleic acids and require no polymer matrix. The NP films are solvent free, environmentally stable, and show good adhesion to the substrates. The sc-CO2 deposition process can deposit films ranging in thickness from a few monolayers, in well ordered arrays, up to 0.5 μm or greater. The photoluminescence (PL) properties of these nano-structured films were studied with Fourier transformation infrared spectroscopy from 5 K up to 300 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bakueva, L., Musikhin, S., Hines, M. A., Chang, T. W. F., Tzolov, M., Scholes, G. D. and Sargent, E. H., Appl. Phys. Lett. 82(17), 2895 (2003).Google Scholar
2. Peterson, J. J. and Krauss, T. D., Nano Lett, 6(3), 510 (2006).Google Scholar
3. Osherov, A., Makai, J. P., Balazs, J., Horvath, Z. J., Gutman, N., Sa’sr, A. and Golan, Y., J. Phys.: Condens. Matter 22, 262002, (2010).Google Scholar
4. Schaller, R. D., Pietryga, J. M., Goupalov, S. V., Petruska, M. A., Ivanov, S. A. and Klimov, V., Phys. Rev. Lett. 95, 196401 (2005).Google Scholar
5. Dalven, R., Infrared Phys, 9, 141, 1969.Google Scholar
6. Biju, V., Kanemoto, R., Matsumoto, Y., Ishii, S., Nakanishi, S., Itoh, T., Baba, Y. and Ishikawa, M., J. Phys. Chem. C. 222, 7924, (2007).Google Scholar
7. Liu, T. Y., Li, M., Ouyang, J., Zaman, M. B., Wang, R., Wu, X., Yeh, C. S., Lin, Q., Yang, B. and Yu, Kui, J. Phys. Chem. C. 113, 2301, (2009).Google Scholar
8. Abel, K. A., Shan, J., Boyer, J. C., Harris, F. and Veggel, F. C. J. M., Chem. Mater. 20, 3794 (2008).Google Scholar
9. Zhang, T., Zhao, H., Riabinina, D., Chaker, M. and Ma, D., J. Phys. Chem. C. 114, 10153, (2010).Google Scholar
10. Wang, J. S., Smetana, A.B., Boeckl, J. J., Brown, G. J. and Wai, M., Langmuir 26(2), 1117 (2010).Google Scholar
11. Smetana, A. B., Wang, J. S., Boeckl, J. J., Brown, G.J. and Wai, C. M., J. Phys. Chem. C 112, 2294 (2008).Google Scholar
12. Smetana, A. B., Wang, J. S., Boeckl, J. J., Brown, G. J., Wai, C. M., Langmuir 23, 10429 (2007).Google Scholar
13. Hines, M. A., and Scholes, G.D., Adv. Mater. 15, 1844 (2003).Google Scholar
14. Liu, J., Anand, M. and Roberts, C. B., Langmuir 22, 3964 (2006).Google Scholar
15. McLeod, M. C., Kitchens, C. L., Roberts, C. B., Langmuir, 21, 2414, (2005).Google Scholar
16. Lin, X. M., Jaeger, H. M., Sorensen, C. M. and Klabunde, K.J., J. Phys. Chem. B 105, 3353 (2001).Google Scholar
17. Ohara, P. C., and Gelbart, W. M., Langmuir 14, 3418 (1998).Google Scholar