Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T21:46:38.075Z Has data issue: false hasContentIssue false

On the defect induced ferromagnetic ordering above room-temperature in undoped and Mn doped ZnO thin films

Published online by Cambridge University Press:  31 January 2011

Mukes Kapilashrami
Affiliation:
Department of Materials Science, Royal Institute of Technology, Stockholm, Sweden
Jun Xu
Affiliation:
Department of Materials Science, Royal Institute of Technology, Stockholm, Sweden
Valter Ström
Affiliation:
Department of Materials Science, Royal Institute of Technology, Stockholm, Sweden
K V Rao
Affiliation:
[email protected], KTH, Dept. of Materials Science-Tmfy-MSE, The Royal Institute of Technology, Stockholm, Stockholm, S-100 44, Sweden, 46 (0) 8 790 7771
Lyubov Belova
Affiliation:
Department of Materials Science, Royal Institute of Technology, Stockholm, Sweden
Get access

Abstract

Evidence for long range ferromagnetic order above room-temperature, RTFM, in pristine ZnO, In2O3, TiO2 nanoparticles and thin films, containing no nominal magnetic elements have been reported recently. This could question the origin of RTFM in doped dilute alloys if for example the ZnO matrix itself develops a defect induced magnetic order with a significant moment per unit cell. In this presentation we report a systematic study of the film thickness dependence of RTFM in pure ZnO deposited by DC Magnetron Sputtering. We observe a maximum in the saturation magnetization, MS, value of 0.62 emu/g (0,018 μB/unit cell), for a ˜480 nm film deposited in an oxygen ambience of appropriate pressure. Above a thickness of around 1 μm the films are diamagnetic as expected. We thus see a sequential transition from ferromagnetism to para- and eventual diamagnetism as a function of film thickness in ZnO. We also find that in such a ZnO matrix with a maximum intrinsic defect induced moment, on doping with Mn the maximum enhanced MS value of 0.78 emu/g is obtained for 1at.% Mn doping. With this approach of appropriate doping in a defect tailored matrix, we routinely obtain RTFM in both undoped and Mn- doped ZnO thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hong, N. H., Sakai, J., Poirot, N. and Brizé, V., Phys. Rev. B 73 (2006) 132404 Google Scholar
2 Banerjee, S., Mandal, M., Gayathri, N. and Sardar, M., Appl. Phys. Lett. 91 (2007) 182501 Google Scholar
3 Sundaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U. and Rao, C.N.R., Phys. Rev. B 74 (2006) 161306 Google Scholar
4 Xu, Q., Schmidt, H., Zhou, S., Potzger, K., Helm, M., Hochmuth, H., Lorenz, M., Setzer, A., Esquinazi, P., Meinecke, C. and Grundmann, M., Appl. Phys. Lett. 92 (2008) 082508 Google Scholar
5 Venkatesan, M., Fitzgerald, C. B. and Coey, J.M.D., Nature (London) 430 (2004) 630 Google Scholar
6 Coey, J. M. D., Venkatesan, M., Stamenov, P., Fitzegerald, C. B. and Dorneles, L.S., Phys. Rev. B 72 (2005) 024450 Google Scholar
7 Yan, Z., Ma, Y. and Wang, D., Wang, J., Gao, Z., Wang, L., Yu, P. and Song, T., Appl. Phys. Lett. 92 (2008) 081911 Google Scholar
8 Kumar, S., Kim, Y.J., Koo, B.H., Gautam, S., Chae, K. H., Kumar, R. and Lee, C.G., Materials Letters 63 (2009) 194196 Google Scholar
9 Yan, W., Sun, Z., Liu, Q., Li, Z., Pan, Z., Wang, J., Wei, S., Wang, D., Zhou, Y. and Zhang, X., Appl. Phys. Lett. 91 (2006) 062113 Google Scholar
10 Xu, Q., Schmidt, H., Hartman, L., Hochmuth, H., Lorenz, M., Setzer, A., Esquinazi, P., Meinecke, C. and Grudmann, M., Appl. Phys. Lett. 91 (2007) 092503 Google Scholar
11 Wang, Q., Sun, Q., Cheng, G., Kawazoe, Y. and Jena, P., Phys. Rev. B 77 (2008) 205411 Google Scholar
12 Erhart, P. and Albe, K., Appl. Phys. Lett. 88 (2006) 201918 Google Scholar
13 Bing-Chu, Y., Xiao-Yan, L., Fei, G. and Xue-Long, M., J. Cent. South Univ. Technol. 15 (2008) 449453 Google Scholar
14 Hong, N. H., Sakai, J. and Brizé, V., J. Phys.: Condens. Matter 19 (2007) 036219 Google Scholar
15 Kapilashrami, M., Upadhyay, R. V., Ström, V., Belova, L. and Rao, K. V., AIP Conference Proceedings, Vol. 1003 (2008) 255257 Google Scholar
16 Huang, L. M., Rosa, A. L. and Ahuja, R., Phys. Rev. B 74 (2006) 075206 Google Scholar
17 Guo, J-H., Gupta, A., Sharma, P., Rao, K. V., Marcus, M. A., Dong, C. L., Guillen, J. M. O., Butorin, S. M., Mattesini, M., Glans, P. A., Smith, K. E., Chang, C. L. and Ahuja, R., J. Phys. Condens. Matter 19 (2007) 172202 Google Scholar
18 Thakur, P., Chae, K. H., Kim, J.Y., Subramanian, M., Jayavel, R. and Asokan, K., Appl. Phys. Lett. 91 (2007) 162503 Google Scholar
19 Dietl, T., J. Phys.: Condens. Matter 19 (2007) 165204 Google Scholar
20 Sharma, P., Gupta, A., Rao, K. V., Owens, F. J., Sharma, R., Ahuja, R., Osorio-Guillen, J. M., Johansson, B. and Gehring, G. A., Nature Materials 2 (2003) 673 Google Scholar
21 Dong, C. L., Persson, C., Vayssieres, L., Augustsson, A., Schmitt, T., Mattesini, M., Ahuja, R., Chang, C. L. and Gou, J-H., Phys. Rev B 70 (2004) 195325 Google Scholar
22 Fu-Chun, Z., Zhi-Yong, Z., Wei-Hu, Z., Jun-Feng, Y. and Jiang-Ni, Y., Chin. Phys. Lett. Vol. 26 No.1 (2009) 016105 Google Scholar