Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:41:06.171Z Has data issue: false hasContentIssue false

Omnidirectional reflectance and optical gap properties of Si/SiO2 Thue-Morse quasicrystals

Published online by Cambridge University Press:  15 March 2011

L. Dal Negro
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
M. Stolfi
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA 02139
Y. Yi
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
J. Michel
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
X. Duan
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
L.C. Kimerling
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
J. Leblanc
Affiliation:
Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA 02139
J. Haavisto
Affiliation:
Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA 02139
Get access

Abstract

Aperiodic one dimensional Si/SiO2 Thue-Morse (T-M) multilayer structures have been fabricated, for the first time, in order to investigate both the band-gap behavior, with respect to the system size (band-gap scaling), and the omnidirectional reflectance of the fundamental optical band-gap. Variable angle reflectance data have experimentally demonstrated a large reflectance band-gap in the optical spectrum of a T-M quasicrystal, in agreement with transfer matrix simulations. We have explained the physical origin of the T-M omnidirectional band-gap as a result of periodic spatial correlations in the self-similar T-M structure, as revealed by Fourier Transform and Wavelet analysis. The unprecedented degree of structural flexibility showed by T-M systems can provide an attractive alternative to photonic crystals for the fabrication of photonic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yablonovitch, E., Phys.Rev.Lett. 58, 2059 (1987)Google Scholar
2. John, S., Phys.Rev.Lett. 58, 2486 (1987)Google Scholar
3. Joannopoulos, J.D., Villeneuve, P.R., Fan, S., Nature (London) 386, 143 (1997)Google Scholar
4. Anderson, P.W., Philos. Mag. 52, 505, (1985)Google Scholar
5. John, S., Phys.Rev.Lett. 53, 2169 (1984)Google Scholar
6. Albada, M.P. van, Lagendijk, A., Phys.Rev.Lett. 55, 2692 (1985)Google Scholar
7. Wiersma, D.S., Bartolini, P., Lagendijk, A., Righini, R., Nature (London) 390, 671 (1997)Google Scholar
8. Nori, F., Rodriguez, J.P., Phys.Rev.B, 34, 2207 (1986)Google Scholar
9. Capaz, R.B., Koiller, B., Queiroz, S.L.A. de, Phys.Rev.B, 43, 6402 (1990 Google Scholar
10. Fujiwara, T., Kohmoto, M., Kokihiro, T., Phys.Rev.B, 40, 7413 (1989)Google Scholar
11. Soukoulis, C.M., Economou, E.N., Phys.Rev.Lett.,48 1043 (1982)Google Scholar
12. Kohmoto, M., Southerland, B., Tang, C., Phys.Rev.B, 35, 1020 (1987)Google Scholar
13. Maciá, E., Phys.Rev.B, 60, 10032 (1999)Google Scholar
14. Gellermann, W., Kohmoto, M., Southerland, B., Taylor, P.C., Phys.Rev.Lett., 72, 633 (1993)Google Scholar
15. Dulea, M., Johansson, M., Riklund, R., Phys.Rev.B., 47, 8547 (1993)Google Scholar
16. Peng, R.W., Huang, X.Q., Qiu, F., Hu, A., Jiang, S.S., Mazzer, M., Appl.Phys.Lett., 80, 3063 (2002).Google Scholar
17. Hattori, T., Tsurumachi, N., Kawato, S., Nakatsuka, H., Phys.Rev.B., 50, 4220 (1994)Google Scholar
18. Negro, L. Dal, Oton, C.J., Gaburro, Z., Pavesi, L., Johnson, P., Lagendijk, A., Righini, M., Colocci, L., Wiersma, D., Phys.Rev.Lett., 90, 5, art.num.055501-1 (2003)Google Scholar
19. Luck, J.M., Phys.Rev.B, 39, 5834, 1989; R.W. Peng, M. Wang, A. Hu, S.S. Jang, G.J. Jin, D. Feng, Phys.Rev.B 52, 13310 (1995)Google Scholar
20. Cheng, Z.M., Savit, R., Merlin, R., Phys.Rev.B, 37, 4375 (1988);Google Scholar
21. Queffélec, M., Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Mathematics, vol.1294, (Springer, Berlin, 1987).Google Scholar
22. Axel, F., Allouche, J.P., Kleman, M., Mendès-France, M., Peyrière, J., J.Phys., (Paris), Colloq.47, C3181 (1986)Google Scholar
23. Liu, N., Phys.Rev.B, 55, 3543, (1997)Google Scholar
24. Wang, X., Grimm, U., Schreiber, M., Phys.Rev.B, 62, 14020 (2000); S. Cheng, G. Jin, Phys.Rev.B, 65, 134206-1 (2002)Google Scholar
25. Kohmoto, M., Southerland, B., Iguchi, K., Phys.Rev.Lett. 58, 2436 (1987)Google Scholar
26. Walnut, D.F., An Introduction to Wavelet Analysis, Birkhauser Boston; (September 27, 2001)Google Scholar
27. Hubbard, B. Burke, The World According to Wavelets: The Story of a Mathematical Technique in the Making, AK Peters Ltd; 2nd edition (May 1998)Google Scholar
28. Holschneider, M., Wavelets, An Analysis Tool, Clarendon Press, Oxford, (1995) C.Godrèche, Luck, J.M., Phys.Rev.B, 4Google Scholar