Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T11:54:59.341Z Has data issue: false hasContentIssue false

New Phosphanyl-Substituted Titanium and Zirconium Alkoxide Precursors for Sol-Gel Processing

Published online by Cambridge University Press:  10 February 2011

Anne Lorenz
Affiliation:
Institut für Anorganische Chemie der Technischen Universität Wien, Getreidemarkt 9, A- 1060 Wien, Austria, [email protected]
Ulrich Schubert
Affiliation:
Institut für Anorganische Chemie der Technischen Universität Wien, Getreidemarkt 9, A- 1060 Wien, Austria, [email protected]
Get access

Abstract

Zirconium and titanium alkoxide derivatives with phosphanyl substituents were synthesized by reaction of the alkoxides with 2-acrylamido-2-methyl-propane sulfonic acid followed by addition of HPPh2 to the acrylic double bond. Alternatively, the phosphinated sulfonic acid was prepared first and then reacted with the alkoxides. The second route is preferred because of the milder reaction conditions, shorter reaction times and avoidance of byproducts. The bifunctional organic ligand is bonded to the titanium or zirconium atom via the sulfonate group, while the PR2 group is available for further reactions such as the coordination of metal compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schubert, U., Hilsing, N., Lorenz, A., Chem. Mater. 7, 2010 (1995).Google Scholar
2. Deschler, U., Kleinschmitt, P., Panster, P., Angew. Chem. 98, 237 (1986); Angew. Chem. Int. Ed. Engl. 25, 236 (1986).Google Scholar
3. Leading references: Sanchez, C., Livage, J., Henry, M., Babonneau, F., J. Non-Cryst. Solids 1988, 100, 65. C. Sanchez, J. Livage, New J. Chem. 14, 513 (1990). J. Livage, M. Henry, C. Sanchez, Prog. Solid State Chem. 18, 258 (1988).Google Scholar
4. Schubert, U., J. Chem. Soc. Dalton Trans., in press.Google Scholar
5. Schubert, U., Arpac, E., Glaubitt, W., Helmerich, A., Chau, C., Chem. Mater. 4, 291 (1992). C. Sanchez, M. In, J. Non-Cryst. Solids 147&148, 1 (1992). C. Sanchez, M. In, P. Toledano, P. Griesmar, Mat. Res. Soc. Symp. Proc. 271, 669 (1992). M. Chatry, M. Henry, M. In, C. Sanchez, J. Livage, J. Sol-Gel Sci. Technol. 1, 233 (1994).Google Scholar
6. Barglik-Chory, Ch., Schubert, U., J. Sol-Gel Sci. Technol. 5, 135 (1995).Google Scholar
7. Schubert, U., Tewinkel, S., Mller, F., Inorg. Chem. 34, 995 (1995). U. Schubert, S. Tewinkel, R. Lamber, Chem. Mater., in press.Google Scholar
8. Buhler, H., Schubert, U., Chem. Ber. 126, 405 (1993). A. Lorenz, U. Schubert, unpublished results.Google Scholar
9. Fremy, G., Castanet, Y., Grzybek, R., Monflier, E., Mortreux, A., Trzeciak, A. M., Ziolkowski, J. J., J. Organomet. Chem. 505, 11 (1995).Google Scholar