Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T05:41:16.767Z Has data issue: false hasContentIssue false

Nanostructure Dependent Surface Energy of Silica Nanorod Arrays through Block Copolymer Templating Processes

Published online by Cambridge University Press:  14 March 2011

Yongbin Zhao
Affiliation:
Division of Integrated Molecular Engineering, Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan.
Aihua Chen
Affiliation:
Division of Integrated Molecular Engineering, Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan.
Tomokazu Iyoda
Affiliation:
Division of Integrated Molecular Engineering, Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan.
Get access

Abstract

The self-assembled block copolymer films with poly (ethylene oxide) (PEO) and hydrophobic polymetharylate (PMA) with azobenzene mesogen in the side chain, denoted as PEOm-b-PMA(Az)n, were used as the template to prepare hexagonally ordered silica nanorod arrays by immersing the template films in the silicate precursor containing tetraetoxysilane (TEOS). The diameter and the center-to-center distance of the SiO2 nanorod arrays were controlled by selecting the block copolymer with different PEO volume fraction. In addition, the contact angles of different kinds’ solvents for the SiO2 nanorod arrays were characterized. We further found, the diameter and the period distance of silica nanorods are very important factors for controlling the contact angle of different kind’s solvents on the surface of the SiO2 nanorod arrays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vahalar, K.J., nature 424, 839 (2003).Google Scholar
2. Cheng, J. Y., Ross, C. A., Chan, V. Z. H., Thomas, E. L., Lammertink, R. G. H., Vancso, G. J., Adv. Mater. 13, 1174 (2001).Google Scholar
3. Krishnammoorthy, S., Ferbig, Y., Hibert, C., Pugin, R., Hinderling, C., Brugger, J., Heinzelmann, H., Nanotech. 19, 285301 (2008).Google Scholar
4. Thurn-Albrecht, T., Schotter, J., Kästle, G. A., Emley, N., Shibauchi, T., Krusin-Elbaum, L., Guarini, K., Black, C. T., Tuominen, M. T., Russell, T. P., Science 290, 2126 (2000).Google Scholar
5. Kim, H. C., Jia, X. Q., Stafford, C. M., Kim, D. H., McCarthy, T. J., Tuominen, M., Hawker, C. J., Russell, T. P., Adv. Mater. 13, 795 (2001).Google Scholar
6. Shin, K., Leach, K. A., Goldbach, J. T., Kim, D. H., Russell, T. P., Nano Lett. 2, 933(2002).Google Scholar
7. Li, J., Kamata, K., Watanabe, S., Iyoda, T., Adv. Mater. 19, 1267 (2007).Google Scholar
8. Chen, A., Kamata, K., Komura, M., Iyoda, T., Adv. Mater. 20, 763 (2008).Google Scholar
9. Tian, Y. Q., Watanabe, K., Kong, X. X., Abe, J., Iyoda, T., Macromolecules 35, 373 (2002).Google Scholar
10. Komura, M., Iyoda, T., Macromolecules 40, 4106 (2007).Google Scholar
11. Cassie, A. B. D., Baxter, , Trans. Faraday Soc. 40, 546 (1944).Google Scholar
12. Blossey, R.. Nature Mater. 2, 301 (2003).Google Scholar
13. Wenzel, R. N., Ind. Eng. Chem. 28, 988 (1964).Google Scholar
14. Fowks, F. M., J. Phys. Chem. 66, 382 (1962).Google Scholar