Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T09:07:15.290Z Has data issue: false hasContentIssue false

Nano-Scale Heteroepitaxy Control of Magnetic Oxide Thin Films on Ultra-Smooth Sapphire Substrates

Published online by Cambridge University Press:  17 March 2011

Masahiro Takakura
Affiliation:
Ceramics Materials & Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, 226-8503, Japan
Takafumi Miyahara
Affiliation:
Ceramics Materials & Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, 226-8503, Japan
Junichi Tashiro
Affiliation:
Ceramics Materials & Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, 226-8503, Japan
Atsushi Sasaki
Affiliation:
Ceramics Materials & Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, 226-8503, Japan
Mitsuyasu Furusawa
Affiliation:
Ceramics Materials & Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, 226-8503, Japan
Mamoru Yoshimoto
Affiliation:
Ceramics Materials & Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, 226-8503, Japan e-mail: [email protected]
Get access

Abstract

We have examined the novel heteroepitaxy of magnetic oxide thin films on ultra-smooth sapphire substrates by laser MBE for fabrication of low-dimensional structures. Employing the atomically controlled substrate surfaces with atomic steps and terraces, we demonstrate the deposition of magnetic oxide nanowires (~0.5 nm high and ~20 nm wide) and nanodots of (Mn, Zn) ferrite, Fe3O4 and NiO.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meier, J., Doudin, B. and Anserment, J., J. Appl. Phys. 79, 6010 (1996).Google Scholar
2. Zheng, L. A., Lairson, B. M., and Shull, R. D., Appl. Phys. Lett. 77, 3242 (2000).Google Scholar
3. Governale, M. and Boese, D., Appl. Phys. Lett. 77, 3215 (2000).Google Scholar
4. Yoshimoto, M., Maruta, H., and Koinuma, H., Appl. Phys. Lett. 73, 187 (1998).Google Scholar
5. Lee, G-H., and Yoshimoto, M., Mater. Sci. & Eng. B56, 213 (1998).Google Scholar
6. Ohnishi, T., Ohtomo, A., Kawasaki, M., Takahashi, K., Yoshimoto, M., and Koinuma, H., Appl. Phys. Lett. 72, 824 (1998).Google Scholar
7. Yoshimoto, M., Shimozono, K., Maeda, T., Ohnishi, T., Kumagai, M., Chikyow, T., Ishiyama, O., Shinohara, M., and Koinuma, H., Jpn. J. Appl. Phys. 34, 688 (1995).Google Scholar
8. Yoshimoto, M., Maeda, T., Ohnishi, T., Koinuma, H., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R., and Miyamoto, A., Appl. Phys. Lett. 67, 2615 (1995).Google Scholar
9. Maeda, T., Yoshimoto, M., and Ohnishi, T., J. Cryst. Growth 177, 95 (1997).Google Scholar
10. Lee, G-H., and Yoshimoto, M., Appl. Surf. Science 127/129, 393 (1998).Google Scholar
11. Yoshimoto, M., Yoshida, K., Maruta, H., hishitani, Y., Koinuma, H., Nishio, S., Kakihana, M., and Tachibana, T., Nature 399, 340 (1999).Google Scholar
12. Ebihara, K., Koshihara, S., and Fujiki, M., Jpn. J. Appl. Phys. 36, L1211 (1997).Google Scholar
13. Yoshida, K., Yoshimoto, M., and Uskiki, T., Biophysical Journal 74, 1654 (1998).Google Scholar
14. Yanagiya, S., Kamimura, S., Fujii, M., Ishida, M., Moriyasu, Y., Matsui, M., Yoshimoto, M., Ohnishi, T., and Koinuma, H., Appl. Phys. Lett. 71, 1409 (1997).Google Scholar
15. Schwoebel, R. L. and Shipsey, E. J., J. Appl. Phys. 37, 3682 (1966).Google Scholar