Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T17:21:30.388Z Has data issue: false hasContentIssue false

Molecular Beam Epitaxy of Nonpolar Cubic AlxGa1−xN/GaN Epilayers

Published online by Cambridge University Press:  01 February 2011

Donat As
Affiliation:
[email protected], University of Paderborn, Department of Physics, Warburger Str. 100, Paderborn, 33098, Germany, +495251605838, +495251605843
Stefan Potthast
Affiliation:
[email protected], University of Paderborn, Department of Physics, Warburger Str. 100, Paderborn, 33098, Germany
Joerg Schoermann
Affiliation:
[email protected], University of Paderborn, Department of Physics, Warburger Str. 100, Paderborn, 33098, Germany
Elena Tschumak
Affiliation:
[email protected], University of Paderborn, Department of Physics, Warburger Str. 100, Paderborn, 33098, Germany
Marcio F. de Godoy
Affiliation:
[email protected], University of Paderborn, Department of Physics, Warburger Str. 100, Paderborn, 33098, Germany
Klaus Lischka
Affiliation:
[email protected], University of Paderborn, Department of Physics, Warburger Str. 100, Paderborn, 33098, Germany
Get access

Abstract

Cubic AlxGa1-xN films were grown by molecular beam epitaxy on freestanding 3C-SiC (001) substrates with an Al mole fraction of x=0 to 0.74. Using the intensity of a reflected high energy electron beam as a probe we find optimum growth conditions of c-AlGaN when a one-monolayer gallium coverage is formed at the growing surface. Clear reflection high energy electron diffraction oscillations during the initial growth of AlxGa1-xN/GaN layers were observed. The growth rate was about 177 nm/h. We find that the aluminium mole fraction is only determined by the aluminium flux, and that the AlxGa1-xN growth rate is independent on the aluminium content. Atomic force microscopy exhibits smooth surfaces with a RMS roughness of about 5 nm on 5×5 µm2 areas. Cathodoluminescence spectroscopy revealed clear band edge emission up to an aluminium mole fraction of x=0.52, showing a linear relation between the band gap energy and the Al composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Craven, M. D., Waltereit, P., Wu, F., Speck, J. S., and DenBaars, S. P., Jpn. J.Appl. Phys. 42, L235 (2003)Google Scholar
2. Waltereit, P., Brandt, O., Trampert, A., Grahn, H.T., Menniger, J., Ramsteiner, M., Reiche, M., and Ploog, K.H., Nature (London) 406, 3850 (2000)Google Scholar
3. Ng, H.M., Appl. Phys. Lett. 80, 4369 (2002)Google Scholar
4. Potthast, S., Schörmann, J., Fernandez, J., As, D. J., Lischka, K., Nagasawa, H., Abe, M., phys. stat. sol (c) 3, No 6, 2091 (2006)Google Scholar
5. Schörmann, J., Potthast, S., As, D.J., and Lischka, K., Appl. Phys. Lett. 90, 041918 (2007)10.1063/1.2432293Google Scholar
6. As, D.J., in “Optoelectronic Properties of Semiconductors and Superlattices”, series editor Manasreh, M.O., (Taylor & Francis Books, Inc., New York, 2003), Vol. 19 chapter 9, pp. 323450 and references thereinGoogle Scholar
7. Smith, D. L., Thin Film Deposition (McGraw-Hill, New York, 1995)Google Scholar
8. Neugebauer, J., Zywietz, Z., Scheffler, M., Northrup, J. E., van der Walle, C.G., Phys. Rev. Lett. 80, 3097 (1998)Google Scholar
9. Harrison, W. A., Electronic Structure and the Properties of Solids (Dover, New York, 1980)Google Scholar
10. Li, S. F., Schörmann, J., Pawlis, A., As, D.J., Lischka, K., Microelec. J. 36, 963968 (2005)Google Scholar
11. Adelmann, C., Langer, R., Feuillet, G., Daudin, B. Appl. Phys. Lett. 75, (22), 3518 (1999)Google Scholar
12. Nakadaira, A. and Tanaka, H., Appl. Phys. Lett 70, (20), 2720 (1997)10.1063/1.119003Google Scholar
13. Koide, Y., Itoh, H., Khan, M. R. H., Hiramatsu, K., Sawaki, N., Akasaki, I., J. Appl. Phys. 61, 4540 (1987)10.1063/1.338387Google Scholar