Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-20T06:54:47.713Z Has data issue: false hasContentIssue false

Microstructure of Ti-Based, Dendrite/Nanostructured-Matrix Composites

Published online by Cambridge University Press:  01 February 2011

Thomas G. Woodcock
Affiliation:
IFW Dresden, Institute of Metallic Materials, Helmholtzstr. 20, D-01069 Dresden, Germany
Sonia Mato
Affiliation:
IFW Dresden, Institute of Metallic Materials, Helmholtzstr. 20, D-01069 Dresden, Germany
Germán Alcalá
Affiliation:
IFW Dresden, Institute of Metallic Materials, Helmholtzstr. 20, D-01069 Dresden, Germany
Guo He
Affiliation:
Light Materials Group, National institute for Materials Science, 1–2–1 Sengen, Tsukuba, Ibaraki 305–0047, Japan
Yinmin Wang
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
En Ma
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
Qunlong Dai
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, CAS, 72Wenhua Road, Shenyang, 110016, P.R. China
Manling Sui
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, CAS, 72Wenhua Road, Shenyang, 110016, P.R. China
Wolfgang Löser
Affiliation:
IFW Dresden, Institute of Metallic Materials, Helmholtzstr. 20, D-01069 Dresden, Germany
Jürgen Eckert
Affiliation:
IFW Dresden, Institute of Metallic Materials, Helmholtzstr. 20, D-01069 Dresden, Germany
Ludwig Schultz
Affiliation:
IFW Dresden, Institute of Metallic Materials, Helmholtzstr. 20, D-01069 Dresden, Germany
Get access

Abstract

Electron microscopy of the composite-forming alloys Ti60Cu14Ni12Sn4Nb10 and Ti60Cu14Ni12Sn4Ta10, shows that for both alloys, the microstructure consists of an array of micron-scale dendrites surrounded by a nanoscale binary eutectic. In the Ta-containing alloy, one of the eutectic phases has been identified as having a bcc crystal structure similar to that of the dendrites. In the Nb-containing alloy, one of the eutectic phases has been found to have a similar composition to that of the dendrites. Further detailed structural and compositional characterization is needed in order to understand the solidification behaviour of such materials. This knowledge may then be used to improve the casting conditions and subsequent mechanical properties of the materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Johnson, W.L., MRS Bull., 24 (10), 4256, (1999)Google Scholar
2. Inoue, A., Acta Mat., 48, 279306, (2000)Google Scholar
3. Bruck, H.A., Christman, T., Rosakis, A.J. and Johnson, W.L., Scripta Metall. Mater., 30, 429434, (1994)Google Scholar
4. Greer, A. L., Science, 267, 1947, (1995)Google Scholar
5. Liu, C.T., Heatherly, L., Eaton, D.S., Carmichael, C.A., Schneibel, J.H., Chen, C.H., Wright, J.L., Yoo, M.H., Horton, J.A. and Inoue, A., Metall. Mater. Trans., 29A, 1811 (1998)Google Scholar
6. Nieh, T.G., Wadsworth, J., Liu, C.T., Ohkubo, Y. and Hirotsu, Y., Acta. Mater., 49, 2887, (2001)Google Scholar
7. He, G., Löser, W. and Eckert, J., Acta. Mater., 51, 5223, (2003)Google Scholar
8. Fan, C. and Inoue, A., Mater. Trans., JIM, 40, 42, (1999)Google Scholar
9. Choi-Yim, H., Busch, R., Köster, U. and Johnson, W.L., Acta Mater., 47, 2455, (1999)Google Scholar
10. Eckert, J., Kübler, A. and Schultz, L., J. Appl. Phys., 85, 7112, (1999)Google Scholar
11. Dandliker, R.B., Conner, R.D. and Johnson, W.L., J. Mater. Res., 13, 2896, (1998)Google Scholar
12. Choi-Yim, H. and Johnson, W.L., Appl. Phys. Lett., 71, 3808, (1997)Google Scholar
13. Kim, C.P., Busch, R., Masuhr, A., Choi-Yim, H. and Johnson, W.L., App. Phys. Lett., 79, 1456, (2001)Google Scholar
14. Conner, R.D., Dandliker, R.B. and Johnson, W.L., Acta Mater., 46, 6089, (1998)Google Scholar
15. Hays, C.C., Kim, C.P. and Johnson, W.L., Phys. Rev. Lett., 84, 2901, (2001)Google Scholar
16. Szuecs, F., Kim, C.P. and Johnson, W.L., Acta Mater., 49, 1507, (2001)Google Scholar
17. Kühn, U., Eckert, J., Mattern, N. and Schultz, L., Appl. Phys. Lett., 80, 2478, (2002)Google Scholar
18. He, G., Eckert, J, Löser, W. and Schultz, L., Nature Mater., 2, 33, (2003)Google Scholar
19. Petzow, G., Metallographisches, Keramographisches und Plastographisches Ätzen (Gebrüder Barntraeger, Berlin, 1994), p181 Google Scholar
20. Tan, H., Zhang, Y., Ma, D., Feng, Y.P. and Li, Y., Acta Mater., 51, 4551, (2003)Google Scholar
21. Zhang, Y., Tan, H., Kang, H.Z., Yao, B. and Li, Y., J. Mater. Res., 18, 664, (2003)Google Scholar
22. Hu, X., Ng, S.C., Feng, Y.P. and Li, Y., Acta Mater., 51, 561, (2003)Google Scholar