Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T06:17:48.012Z Has data issue: false hasContentIssue false

Microscopic Model for Creation And Removal of Metastable Dangling Bonds in a-Si:H

Published online by Cambridge University Press:  01 February 2011

M.J. Powell
Affiliation:
Philips Research Laboratories, Redhill, Surrey, RH1 5HA, United Kingdom
S.C. Deane
Affiliation:
Philips Research Laboratories, Redhill, Surrey, RH1 5HA, United Kingdom
R.B. Wehrspohn
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
Get access

Abstract

We present a new microscopic model for metastable Si dangling bond defect creation in hydrogenated amorphous silicon, which is applicable to both light-induced and carrier-induced defect creation. The key feature of our model is that hydrogen is always in the tedrahedral-like site, which is strongly bound in amorphous silicon, and never in the bond-centered site. Breaking of Si-Si bonds and successive stabilisation by bond-switching of nearby hydrogen from doubly hydrogenated Si-Si bonds (SiHHSi) results in two hydrogen-stabilised dangling bonds (SiHD). Since hydrogen is in the Td site in all configurations, this defect creation reaction is consistent with ESR, NMR, hydrogenation experiments and the mechanical stress dependence of defect creation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Stutzmann, M., Brandt, M. S., and Bayerl, M. W., J. Non-Cryst. Sol. 266-269, 1 (2000).Google Scholar
2 Stutzmann, M., Mater. Res. Soc. Proc. 467, 37 (1997).Google Scholar
3 Yokomichi, H. and Morigaki, K., Philos. Mag. Lett. 73 (1996) 283.Google Scholar
4 Brandt, M. S., Bayerl, M. W., Stutzmann, M., and Graeff, C. F. O., J. Non-Cryst. Sol. 227-230, 343 (1998).Google Scholar
5 Reimer, J. A., Vaughan, R. W., and Knights, J. C., Phys. Rev. B 24, 3360 (1981).Google Scholar
6 Wu, Y., Stephen, J.T., Han, D. X., Rutland, J. M., Crandall, R. S., and Mahan, A. H., Phys. Rev. Lett. 77 2049 (1996).Google Scholar
7 Acco, S. et al., Phys. Rev. B 53 4415 (1996).Google Scholar
8 Baum, J., Gleason, K. K., Pines, A., Garroway, A. N., and Reimer, J. A., Phys. Rev. Lett. 56, 1377 (1986).Google Scholar
9Note that the tetrahedral-like position (Td) in amorphous silicon forms a strong Si-H bond, together with some Si network motion, in contrast to crystalline silicon, where the tetrahedral site is commonly attributed to a weakly bound interstitial state. An alternative notation, for this site could be the anti-bonding-like site (AB). However, to be in-line with previous publications, we refer to it as a tetrahedral-like site.Google Scholar
10 Nickel, N. H. and Jackson, W. B., Phys. Rev. B 51, 4872 (1995).Google Scholar
11 Jackson, W. B., Tsai, C. C., and Doland, C., Phil. Mag. B 64, 611 (1991).Google Scholar
12 Wehrspohn, R. B., Deane, S. C., French, I. D., Gale, I. G., Hewitt, J., Powell, M. J. and Robertson, J, J. Appl. Phys. 87, 144 (2000).Google Scholar
13 Wehrspohn, R. B., Deane, S. C., French, I. D. and Powell, M J, J. Non-Cryst. Sol. 266-269, 49 (2000).Google Scholar
14 Nonomura, S., Yoshida, N., Gotoh, T., Sakamoto, T., Matsuda, A., and Nitta, S., J. Non-Cryst. Sol. 266-269, 474 (2000).Google Scholar
15 Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B 32, 23 (1985).Google Scholar
16 Jackson, W. B., Phys. Rev. B 41, 10257 (1990).Google Scholar
17 Branz, H. M., Phys. Rev. B 59 5498 (1999).Google Scholar
18 Biswas, R., Li, Y.P., and Pan, B. C., Mater. Res. Soc. Symp. Proc. 609, A3.5 (2000).Google Scholar
19 Jackson, W., Tsai, C. C., and Thomson, R., J. Non-Cryst. Sol. 114, 396 (1989).Google Scholar
20 Powell, M.J., Deane, S.C., and Wehrspohn, R.B., J. Non-Cryst. Sol. 299-302, 556 (2002).Google Scholar
21 Fedders, P. A., Drabold, D. A. and Nakhmanson, S., Phys. Rev. B 58, 15624 (1998).Google Scholar
22 Schumm, G., Jackson, W. B., and Street, R A, Phys. Rev. B 48, 14198 (1993).Google Scholar
23 Chang, K. J. and Chadi, D. J., Phys. Rev. B 40, 11644 (1989).Google Scholar
24 Isoya, J., Yamasaki, S., Okushi, H., Matsuda, A., and Tanaka, K., Phys. Rev. B 47, 7013 (1993).Google Scholar
25 Isoya, J., Yamazaki, S., Matsuda, A., and Tanaka, K, Phil. Mag. B 69 263 (1994).Google Scholar
26 Brandt, M. S., Bayerl, M. W., Stutzmann, M., and Graeff, C. F. O., J. Non-Cryst. Sol. 227-230 343 (1998).Google Scholar
27 Walle, C. G. van de and Nickel, N. H., Phys. Rev. B 51, 2636 (1995).Google Scholar
28 Powell, M. J. and Deane, S. C., Phys. Rev. B 48, 10815 (1993).Google Scholar
29 Powell, M. J. and Deane, S. C., Phys. Rev. B 53, 10121 (1996).Google Scholar
30 Stradins, P. and Fritzsche, H., Phil. Mag. B 69, 121 (1994).Google Scholar
31 Santos, P. V., Johnson, N. M., and Street, R. A., Phys. Rev. Lett. 672, 2686 (1991).Google Scholar
32 Street, R. A., Kakalios, J., Tsai, C. C., and Hayes, T. M., Phys. Rev. B 35, 1316 (1987).Google Scholar