Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T05:51:47.928Z Has data issue: false hasContentIssue false

Mechanisms of Stress Corrosion Cracking in Si: A Hybrid Quantum-Mechanical/Molecular-Dynamics Simulation

Published online by Cambridge University Press:  11 February 2011

Rachid Belkada
Affiliation:
Japan Science and Technology Corporation, Kawaguchi 332–0012, Japan Department of Applied Sciences, Yamaguchi University, Ube 755–8611, Japan
Shuji Ogata
Affiliation:
Department of Applied Sciences, Yamaguchi University, Ube 755–8611, Japan
Fuyuki Shimojo
Affiliation:
Departemnet of Physics, Kumamoto University, Kumamoto 860–8555, Japan
Aiichiro Nakano
Affiliation:
CCLMS, Louisiana State University, Baton Rouge, LA70803–4001, U.S.A Departement of Computer Science, University of Southern California, Los Angeles, CA90089–0242, U.S.A.
Priya Vashishta
Affiliation:
CCLMS, Louisiana State University, Baton Rouge, LA70803–4001, U.S.A Departement of Computer Science, University of Southern California, Los Angeles, CA90089–0242, U.S.A.
Rajiv K. Kalia
Affiliation:
CCLMS, Louisiana State University, Baton Rouge, LA70803–4001, U.S.A Departement of Computer Science, University of Southern California, Los Angeles, CA90089–0242, U.S.A.
Get access

Abstract

We investigate mechanisms of stress corrosion cracking in Si using a hybrid quantum-mechanical/molecular-dynamics simulation code developed recently for parallel computers. We perform the simulation for a cracked Si-model under tension (mode-I opening) with three H2O molecules around the crack front to investigate possible effects of both saturation of dangling bonds of Si with hydrogen atoms and environment molecules on the fracture initiation. Our results demonstrate existence of a path for an H2O molecule to react with Si-Si bonds at the crack front in contrast to a previous theoretical study based on the molecular orbital theory [W. Wong-Ng et al., Comp. Mater. Sci. 6, 63 (1996)].

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nanotechnology Research Directions, IWGN Workshop Report, edited by Roco, M. C., Williams, S., and Alvisatos, P. (Int'l Technology Research Inst., Loyola College, Baltimore, 1999), http://itri.loyola.edu/nano/IWGN.Research.Directions/.Google Scholar
2. Lawn, B., “Fracture of Brittle Solids Second Edition,” ed. Davis, E. A., and Ward, I. M., (Cambridge, New York, 1995).Google Scholar
3. Muhlstein, C., Brown, S., and Ritchie, R. O., Sensors and Actuators A94, 177 (2001).Google Scholar
4. Wong-Ng, W., White, G. S., Freiman, S. W., and Lindsay, C. G., Comp. Mater. Sci. 6, 63 (1996).Google Scholar
5. Hohenberg, P., and Kohn, W., Phys. Rev. 136, B864 (1964);Google Scholar
Kohn, W., and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
6. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T.A., and Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
7. Shimojo, F., Campbell, T. J., Kalia, R. K., Nakano, A., Ogata, S., Vashishta, P., and Tsuruta, K., Future Generation Comp. Sys. 17, 279 (2000).Google Scholar
8. Ogata, S., Shimojo, F., Kalia, R. K., Nakano, A., and Vashishta, P., Comp. Phys. Comm. 149, 30 (2002).Google Scholar
9. Ogata, S., Lidorikis, E., Shimojo, F., Nakano, A., Vashishta, P., and Kalia, R. K., Comp. Phys. Comm. 138, 143 (2001).Google Scholar
10. Stillinger, F. H., and Weber, T.A., Phys. Rev. B 31, 5262 (1985).Google Scholar
11. Chelikowsky, J. R., Troullier, N., and Saad, Y., Phys. Rev. Lett. 72, 1240 (1994).Google Scholar
12. Ogata, S., Shimojo, F., Kalia, R.K., Nakano, A., Vashishta, P., and Kalia, R.K., J. Appl. Phys., submitted.Google Scholar
13. Thiel, P. A., and Madey, T. E., Surf. Sci. Rep. 7, 211 (1987).Google Scholar