Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:57:06.044Z Has data issue: false hasContentIssue false

Magnetization Process in Cr Substituted Diluted Magnetic Semiconductor Films

Published online by Cambridge University Press:  10 February 2011

N. Adachi
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan, [email protected]
J. Hirano
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan, [email protected]
T. Yamazaki
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan, [email protected]
T. Okuda
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan, [email protected]
H. Kitazawa
Affiliation:
National Institute for Metals (NRIM), Physical Properties Division, 1-2-1 Sengen, Tsukuba, Ibaraki 305, Japan
G. Kido
Affiliation:
National Institute for Metals (NRIM), Physical Properties Division, 1-2-1 Sengen, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

Cr substituted dilute magnetic semiconductor Cd1-xCrxSe films were grown onto fused silica and sapphire (00 · 1) substrates by vapor deposition technique. The films with wurtzite structure were obtained at composition of 0 ≤ × ≤ 0.66. Saturation magnetization and magnetic susceptibility increased as x increased. In comparison with Mn-DMS system, the initial magnetization curves saturate easily. This tendency is different from most DMS materials in which magnetic ions interact with each other antiferromagnetically. It is possible that ferromagnetic interactions exist in Cd1-xCrxSe.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Furdyna, J. K., J. Appl. Phys. 64, R29 (1988).10.1063/1.341700Google Scholar
2. Galazka, R. R., Proc. XIV Intern. Conf. Phys. Semi cond., Edinbourgh, p.133 (1978).Google Scholar
3. Oka, Y., Proc. 4th Japan-Korea Joint Symposium (Cheju island, korea 1994) 26.Google Scholar
4. Oikawa, R., Onodera, K., Honda, Y.: Tokin Tech. Rev., 19, 32 (1993).Google Scholar
5. Hayashi, T., Tanaka, M., Nishinaga, T. and Shimada, H., J. Appl. Phys. 81, p. 4865 (1997).10.1063/1.364859Google Scholar
6. Mac, W., Khoi, N.T., Twardowski, A., Gaji, J. A. and Demianiuk, M., Phys. Rev. Lett. 71, p.2327 (1993).10.1103/PhysRevLett.71.2327Google Scholar
7. Shannon, R. D., Acta Crystallographica A32, p.751 (1976).10.1107/S0567739476001551Google Scholar
8. Anderson, J. R., Kido, G., Nakagawa, Y., Nishina, Y., Gorska, M., Kowalcyk, L. and Golacki, Z., Phys. Rev. B41, p.1014 (1990).10.1103/PhysRevB.41.1014Google Scholar
9. Adachi, N., Inoue, M., Mogi, I. and Kido, G., J. Phys. Soc. Japan 64, p.1378 (1995).10.1143/JPSJ.64.1378Google Scholar
10. Gaj, J.A.; Acta PhtsicaPonica 73, p.463 (1988).Google Scholar
11. Vallin, J. T. and Watkins, G. D., Phys. Rev. B9, p.2051(1974).10.1103/PhysRevB.9.2051Google Scholar
12. Mac, W., Twardowski, A., Eggenkamp, P. J. T., Swagten, J. M., Shapira, Y. and Demianiuk, M., Phys. Rev. B50, p. 14144 (1994).10.1103/PhysRevB.50.14144Google Scholar
13. Tsubokawa, I., J. Phys. Soc. Japan 15, p.2243 (1960).10.1143/JPSJ.15.2243Google Scholar
14. Yuzuri, M., Adachi, Y., Kaneko, T., Yoshida, Y. and Abe, S., J. Magn. Magn. Mat. 140–144, p.151 (1995).10.1016/0304-8853(94)01128-1Google Scholar