Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T09:24:12.881Z Has data issue: false hasContentIssue false

Magnetic Interactions in Fe Nanoparticle Arrays

Published online by Cambridge University Press:  21 March 2011

D. Farrell
Affiliation:
Dept. of Physics, Carnegie Mellon University Pittsburgh, PA 15213, U.S.A.
S. Yamamuro
Affiliation:
Dept. of Physics, Carnegie Mellon University Pittsburgh, PA 15213, U.S.A.
Yumi Ijiri
Affiliation:
Dept. Of Physics, Oberlin College Oberlin, OH 44074
S. A. Majetich
Affiliation:
Dept. of Physics, Carnegie Mellon University Pittsburgh, PA 15213, U.S.A.
Get access

Abstract

The preparation of monodisperse Fe nanoparticles and self-assembly into hcp and fcc or fcc-like arrays is described. Here dipolar interactions dominate for the interparticle spacings studied (1.4-3.4 nm). Comparison of the low temperature magnetic properties of multilayer arrays with those of dilute suspensions of the same particles show increased coercivity and slower magnetic relaxation in the arrays. Mean field calculations of magnetic interaction fields suggest the type of ordered structures formed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, J., Boyd, C., and Luo, W., Phys. Rev. Lett. 77, 390393 (1996).Google Scholar
2. Chamberlin, R., Humfeld, K. D., Farrell, D., Yamamuro, S., Ijiri, Y., and Majetich, S. A., J. Appl. Phys. (in press, 2001).Google Scholar
3. Kondratyev, V. N. and Lutz, H. O., Phys. Rev. Lett. 81, 4508 (1998).Google Scholar
4. Sun, S., Murray, C. B., Weller, D., Folks, L., and Moser, A., Science 287, 1989 (2000).Google Scholar
5. Petit, C., Taleb, A., and Pileni, M. P., J. Phys. Chem. 103, 1805 (1999).Google Scholar
6. Yamamuro, S., Farrell, D., Humfeld, K., and Majetich, S. A., MRS Symposium Proceedings, 636, D10.8.1–D10.8.6, (2001).Google Scholar
7. Yamamuro, S., Farrell, D. F., and Majetich, S. A., (unpublished).Google Scholar
8. Zanchet, D., Moreno, M. S., Ugarte, D., Phys. Rev. Lett. 82, 52775280 (1999).Google Scholar
9. Farrell, D., Yamamuro, S., and Majetich, S. A., MRS Symp. Proc. 674, U4.4.1–U4.4.6 (2001).Google Scholar
10. Street, R. and Woolley, J. C., Proc. Phys. Soc. A 62, 562 (1949).Google Scholar
11. Chantrell, R. W., Fearon, M., and Wohlfarth, E. P., Phys. Stat. Sol. (a) 9, 213 (1986).Google Scholar
12. Humfeld, Keith D., Giri, Anit K., Majetich, Sara A., and Venturini, Eugene L., IEEE Trans. Mag. 37, 2194 (2001).Google Scholar
13. Russier, V., Petit, C., Legrand, J., and Pileni, M. P., Phys. Rev. B 62, 3910 (2000).Google Scholar
14. Fernandez, J. F. and Alonso, J. J., Phys. Rev. B 62, 53 (2000).Google Scholar
15. Luttinger, J. M. and Tisza, L., Phys. Rev. 70, 954 (1946).Google Scholar
16. Mukhopadhyay, G., Apell, P., and Hanson, M., J. Magn. Magn. Mater. 203, 286 (1999).Google Scholar
17. Martin, J. E. and Anderson, R. A. (private communication).Google Scholar