Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T06:30:47.587Z Has data issue: false hasContentIssue false

Macroporous Silica and Alkylene-Bridged Polysilsesquioxane Gels with Templated Nanopores

Published online by Cambridge University Press:  01 February 2011

Kazuki Nakanishi*
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto 615–8510, JAPAN PRESTO, JST, JAPAN
Get access

Abstract

Gels with hierarchical well-defined macropores and supramolecularly templated mesopores have been synthesized in the systems of pure silica as well as organic-inorganic hybrids. Cationic surfactants such as alkyltrimethylammonium salts and nonionic surfactants such as poly(ethyleneglycol)-poly(propyleneglycol)- poly(ethyleneglycol) triblock copolymers, EOPOEO, were found to be effective for pure silica system both in inducing the phase separation to give macroporous morphology and in templating the mesopores within a narrow distribution width. The partial introduction of methyl-modified alkoxide into the pure silica system lead to increased phase separation tendency accompanied by the disturbance of the supramolecular templating of mesopores. By contrast, in the 1,2-bis(trimethoxysilyl)ethane systems, poly(ethylene glycol) and EOPOEO were much better additive to induce phase separation in spite of the presence of internal hydrocarbon chain. Combination of well-defined macropores and supramolecularly templated mesopores has been achieved by selecting an appropriate molecular weight and concentration of EOPOEO in the starting composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kresge, C.T., Leonowicz, M.E., Roth, W.J. and Vartuli, J.C., Nature, 359, 710 (1992).Google Scholar
2. Hyu, Q., Margolese, D.I., Ciesla, U., Demuth, D.G., Feng, P., Gier, T.E., Sieger, P., Firouzi, A., Chmelka, B.F., Schüth, F. and Stucky, G.D., Chem. Mater., 6(1994), 1176.Google Scholar
3. Lindén, M., Schacht, S., Schüth, F., Steel, A. and Unger, K.K., J. Porous Mater., 5, 177 (1998).Google Scholar
4. Bagshaw, S.A., Prouzet, E. and Pinnavaia, T.J., Science, 269, 1242 (1995).Google Scholar
5. Zhao, D., Huo, Q., Feng, J., Chmelka, B.F. and Stucky, G.D., J. Am. Chem. Soc., 120, 6024 (1998).Google Scholar
6. Yang, P., Deng, T., Zhao, D., Feng, P., Pine, D., Chmelka, B.F., Whitesides, G.M. and Stucky, G.D., Science, 282, 2244 (1998).Google Scholar
7. Zhao, D., Yang, P., Chmelka, B.F. and Stucky, G.D., Chem. Mater., 11, 1174 (1999).Google Scholar
8. Lin, H., Liu, S., Mou, C. and Tang, C., Chem. Commun., 1999, 583.Google Scholar
9. Lu, Y., Ganguli, R., Drewien, C.A., Anderson, M.T., Brinker, C.J., Gong, W., Guo, Y., Soyez, H., Dunn, B., Huang, M.H. and Zink, J.I., Nature, 389, 364 (1997).Google Scholar
10. Anderson, M.T., Martin, J.E., Odinek, J.G., Newcomer, P.P. and Wilcoxon, J.P., Microporous Mater., 10, 13 (1997).Google Scholar
11. Huo, Q., Feng, J., Schüth, F. and Stucky, G.D., Chem. Mater., 9, 14 (1997).Google Scholar
12. Ogawa, M., J. Am. Chem. Soc., 116, 7941 (1994).Google Scholar
13. Lu, Y., Ganguli, R., Drewien, C.A., Anderson, M.T., Brinker, C.J., Gong, W., Guo, Y., Soyez, H., Dunn, B., Huang, M.H. and Zink, J.I., Nature, 389, 364 (1997).Google Scholar
14. Lu, Y., Fan, H., Stump, A., Ward, T.L., Rieker, T. and Brinker, C.J., Nature, 398, 223 (1999).Google Scholar
15. Nakanishi, K., J. Porous Mater., 4, 67 (1997).Google Scholar
16. Koehler, W. C., Physica (Utrecht), 137B, 320 (1986).Google Scholar
17. Wignall, G. D. and Bates, F. S., J. Appl. Cryst., 20, 28 (1986).Google Scholar
18. Dubner, W. S., Schultz, J. M. and Wignall, G. D., J. Appl. Cryst., 23, 469 (1990).Google Scholar
19. Nakanishi, K., Takahashi, R., Nagakane, T., Kitayama, K., Koheiya, N., Shikata, H. and Soga, N., J. Sol-Gel Sci. & Technol., 17, 191 (2000).Google Scholar
20. Sato, Y., Nakanishi, K., Hirao, K., Jinnai, H., Shibayama, M., Melnichenko, Y.B. and Wignall, G.D., Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187/188 117 (2001).Google Scholar
21. Somasundaran, P., Snell, E. D. and Xu, Q., J. Coll. Interface Sci., 144 165 (1991).Google Scholar
22. Aveyard, R., Brinks, B.P., Cooper, P., Fletcher, P.D.I., Prog. Colloid Polym. Sci., 81, 36 (1990).Google Scholar
23. Nelson, P.H., Hatton, T.A., Rutledge, G.C., J. Chem. Phys., 110, 9673 (1999).Google Scholar
24. Ryan, K.M., Coleman, N.R.B., Lyons, D.M., Hanrahan, J.P., Spalding, T.R., Morris, M.A., Steytler, D.C., Heenan, R.K. and Holmes, J.D., Langmuir, 18(12), 4996 (2002).Google Scholar
25. Kirkland, J.J., Henderson, J.W., DeStefano, J.J., van Straten, M.A. and Claessens, H.A., J. Chromatogr. A, 762, 97, (1997).Google Scholar
26. Itagaki, A., Nakanishi, K. and Hirao, K., J. Sol-Gel Sci. Technol., 26, 153, (2003).Google Scholar
27. Kobayashi, Y., Nakanishi, K. and Hirao, K., Mat. Res. Soc. Symp. Proc. 788, 2004, to be published.Google Scholar