Published online by Cambridge University Press: 15 February 2011
This paper presents the results of development, characterization and integration screening of low dielectric constant (low k) fluorinated polyimides for interlayer dielectric applications. Evolution of these materials has progressed with the intent of improving fundamental thin film properties, such as thermal stress behavior, modulus, CTE, and dielectric constant. Further refinements to fluorinated polyimides have been to improve their process compatibility and integration characteristics, primarily in the area of deep sub-micron gap filling. The avenues taken to attain these objectives will be illustrated.
Subsequent integration of low k fluorinated polyimides has been achieved for a completed single-level metal BEOL test vehicle to highlight the impacts of the film's adhesion, mechanical and thermomechanical properties. In addition, the completed fluorinated polyimide single-level metal structures have been used to characterize electrical performance in contrast to single-level metal structures with TEOS dielectric. Intralevel capacitance and leakage current have been measured with dual comb and serpentine structures. Modeling has been applied to verify dielectric constant in submicron geometries from the capacitance measurements.