Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T04:05:16.944Z Has data issue: false hasContentIssue false

Low Bias Dry Etching of Sic and Sicn in ICP NF3 Discharges

Published online by Cambridge University Press:  10 February 2011

J. J. Wang
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL, USA
Hyun Cho
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL, USA
E. S. Lambers
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL, USA
S. J. Peartont
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL, USA
M. Ostling
Affiliation:
Ryal Institute of Technology, Kista, Sweden
C.-M. Zetterling
Affiliation:
Ryal Institute of Technology, Kista, Sweden
J.M. Grow
Affiliation:
New Jersey Institute of Technology, Newark NJ, USA
F. Ren
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville FL, USA
R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque NM, USA
J. Han
Affiliation:
Sandia National Laboratories, Albuquerque NM, USA
Get access

Abstract

A parametric study of the etching characteristics of 6H p+ and n+ SiC and thin film SiC0.8N0.2 in Inductively Coupled Plasma NF3/O2 and NF3/Ar discharges has been performed. The etch rates in both chemistries increase monotonically with NF3 percentage and rf chuck power reaching 3500Å·min−1 for SiC and 7500 Å·min−1 for SiCN. The etch rates go through a maximum with increasing ICP source power, which is explained by a trade-off between the increasing ion flux and the decreasing ion energy. The anisotropy of the etched features is also a function of ion flux, ion energy and atomic fluorine neutral concentration. Indium-tinoxide( ITO) masks display relatively good etch selectivity over SiC(maximum of 70:1) while photoresist etches more rapidly than SiC. The surface roughness of SiC is essentially independent of plasma composition for NF3/O2 discharges, while extensive surface degradation occurs for SiCN under high NF3:O2 conditions. The high ion flux available in the ICP tool allows etching even at very low dc self-biases, ≤ −10V, leading to very low damage pattern transfer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. see for example, in Properties of SiC, ed. G.L. Harris(Inspec, London UK, 1995) pp 131–149, Flemish, J.R., in Processing of Wide Bandgap Semiconductors, ed. Pearton, S.J.(Noyes Publications, Park Ridge NJ 1997), P.H. Yih and A.J. Steckl, J. Electron. Soc. 142 2853 (1995), C.E. Weitzel, J.W. Palmour, C.H. Carter, Jr., K. Moore, K.J. Nordquist, S. Allen, C. Thero and M. Bhatnagar, IEEE Trans Electron. Dev. 43 1732 (1996).Google Scholar
2. Casady, J.B., Luckowski, E.D., Bozack, M., Sheridan, D., Johnson, R.W. and Williams, J.R., J. Electron Soc. 143 1750 (1996).Google Scholar
3. Yih, P.H. and Steckel, A.J., J. Electron Soc. 142 312 (1995).Google Scholar
4. Palmour, J.W., Davis, R.F., Wallett, T.M. and Bhasin, K.B., J. Vac. Sci. Technol. A4 590 (1986).Google Scholar
5. Steckl, A.J. and Yih, P.H., Appl. Phys. Lett. 60 1966 (1992).Google Scholar
6. Luther, B.P., Rozyllo, J. and Miller, D.L., Appl. Phys. Lett. 63 171 (1993).Google Scholar
7. Pan, W.S. and Steckl, A.J., J. Electrochem. Soc. 137 212 (1990).Google Scholar
8. Padiyath, R., Wright, R.L., Chaudry, M.I. and Babu, S.V., Appl. Phys. Lett. 58 1053 (1991).Google Scholar
9. Flemish, J.R., Xie, K. and Zhao, J., Appl. Phys. Lett. 64 2315 (1994).Google Scholar
10. Flemish, J.R., Xie, K., Buchwald, W., Casas, L., Zhao, J.H., McLane, G.F. and Dubey, M., Mat. Res. Soc. Symp. Proc. Vol.339 145 (1994).Google Scholar
11. McDaniel, G.F., Lee, J.W., Lambers, E.S., Pearton, S.J., Holloway, P.H., Ren, F., Grow, J.M., Bhaskaran, M. and Wilson, R.G.. J. Vac. Sci. Technol. A14 885 (1997).Google Scholar
12. Flemish, J.R. and Xie, K., J. Electrochem. Soc. 143 2620 (1996).Google Scholar
13. Xie, K., Flemish, J.R., Zhao, J.H., Buchwald, W.R. and Casas, L., Appl. Phys. Lett. 67 368 (1995).Google Scholar
14. see for example, Casady, J. B. in Processing of Wide Bandgap Semiconductors, ed. S.J. Pearton(Noyes Publications, Park Ridge, NJ 1997).Google Scholar
15. Casady, J.B., Luckowski, E.D., Bozack, M., Sheridan, D., Johnson, R.W. and Williams, J.R., Int. Phys. Conf. Ser. 142 625 (1996).Google Scholar
16. Ren, F., Grow, J.M., Bhaskaran, M., Lee, J.W., Vartuli, C.B., Lothian, J.R. and Flemish, J.R., Mat. Res. Soc. Symp. Proc. Vol.421 251 (1996).Google Scholar
17. Flemish, J.R., Xie, K. and McLane, G.F., Mat. Res. Soc. Symp. Proc. 421 153 (1996).Google Scholar
18. Lanois, F., Lassagne, P. and Locatelli, M.L., Appl. Phys. Lett. 69 236 (1996).Google Scholar
19. Wu, J., Parsons, J.D. and Evans, D.R., J. Electrochem. Soc. 142 669 (1995).Google Scholar
20. Niemann, E., Boos, A. and Leidich, D., Int. Phys. Conf. Ser. 137 695 (1994).Google Scholar
21. Cao, L., Li, B. and Zhao, J.H., presented at SiC and Related Compounds Conf., Stockholm, Sweden, Sept. 1997.Google Scholar
22. Cao, L. and Zhao, J.H., IEEE. Electron. Dev. Lett. (in press).Google Scholar
23. Grow, J.H., Electrochem. Soc. Proc. Vol.96–2 60 (Pennington NJ 1996).Google Scholar