Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:29:40.072Z Has data issue: false hasContentIssue false

Light Emission from Porous Silicon Subjected to Rapid Thermal Oxidation

Published online by Cambridge University Press:  28 February 2011

A. G. Cullis
Affiliation:
DRA Malvern, St Andrews Road, Malvern, Worcs WR14 3PS, UK
L. T. Canham
Affiliation:
DRA Malvern, St Andrews Road, Malvern, Worcs WR14 3PS, UK
G. M. Williams
Affiliation:
DRA Malvern, St Andrews Road, Malvern, Worcs WR14 3PS, UK
P. W. Smith
Affiliation:
DRA Malvern, St Andrews Road, Malvern, Worcs WR14 3PS, UK
O. D. Dosser
Affiliation:
DRA Malvern, St Andrews Road, Malvern, Worcs WR14 3PS, UK
Get access

Abstract

Luminescent oxidised porous Si is produced by rapid thermal annealing of the anodised material in a dry oxygen ambient. Its light-emitting properties are studied by both photoluminescence and cathodoluminescence methods. The structure of the oxidised material is examined by transmission electron microscopy, while its oxygen content is determined by X-ray microanalysis. These investigations show that crystalline Si nanostructures remain in the oxidised porous material and account for its luminescence properties. The work demonstrates that the speculated importance of either Si-based amorphous phases or the interesting material, siloxene, in this regard is unrealistic.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Cullis, A.G. and Canham, L.T., Nature 353, 335 (1991).Google Scholar
3. Bsiesy, A., Vial, J.C., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, R., Halimaoui, A. and Bomchil, G., Surf. Sci. 254, 195 (1991).Google Scholar
4. Koyama, H., Araki, M., Yamamoto, Y., Koshida, N., Jpn. J. Appl. Phys. 30, 3606 (1991)Google Scholar
5. Ito, T., Ohta, T. and Hiraki, A., Jpn. J. Appl. Phys. 31, L1 (1991).Google Scholar
6. Yamada, M. and Kondo, K., Jpn. J. Appl. Phys. 31, L993 (1992)Google Scholar
7. Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B.K., Koch, F. and Lehman, V., Appl. Phys. Lett. 61, 943 (1992).Google Scholar
8. Tsai, C., Li, K.H., Sarathy, J., Shih, S. and Campbell, J.C., Appl. Phys. Lett. 59, 2814 (1991).Google Scholar
9. Fathauer, R.W., George, T., Ksendzov, A., Lin, T.L., Pike, W.T. and Vasquez, R.P., Appl. Phys. Lett. 60, 995 (1992).Google Scholar
10. Prokes, S.M., Glembocki, O.J., Bermudez, V.M., Kaplan, R., Friedershorf, L.E. and Searson, P.C., Phys. Rev. B45, 13788 (1992).Google Scholar
11. Brandt, M.S., Fuchs, H.D., Stutzmann, M., Weber, J. and Cardona, M., Sol. State. Commun. 81, 307 (1992).Google Scholar
12. Herino, R., Perio, A., Barla, K. and Bomchil, G., Mat. Lett. 2, 519 (1984).Google Scholar
13. Koyama, H., J. Appl. Phys. 51, 2228 (1980).Google Scholar
14. Deak, P., Rosenbauer, M., Stutzmann, M., Weber, J. and Brandt, M.S., Phys. Rev. Lett. 69, 2531 (1992).Google Scholar
15. Calcott, P.D.J., Nash, K.J., Canham, L.T., Kane, M.J. and Brumhead, D., This proceedings volume and J. Phys. Condens. Mater. 5, (1993)Google Scholar