Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T17:17:43.396Z Has data issue: false hasContentIssue false

Lateral Diffusion of Platinum Through Pt2Si in Pt/Si Couples

Published online by Cambridge University Press:  15 February 2011

L. R. Zheng*
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, NY 14853, (U.S.A.)
L. S. Hung*
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, NY 14853, (U.S.A.)
J. W. Mayer
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, NY 14853, (U.S.A.)
*
Present address: Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
Present address: Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
Get access

Abstract

Lateral diffusion couples formed by depositing platinum islands on silicon layers on Al2O3 were used in conjunction with scanning electron microprobe measurements to investigate the growth of platinum silicides in the temperature range 400–700 °C. The phase Pt2Si grows over a length of 4–30 μm with a rate proportional to the square root of time and an activation energy of approximately 1.3 eV. With samples containing 7 at.% Rh in the platinum, the growth rate of Pt2Si is reduced and the activation energy is increased to about 2.0 eV. In these Pt–7at.% Rh samples, electron-induced X-ray measurements indicate that rhodium remains in the original deposited region while both platinum and silicon diffuse in the formed Pt2Si region.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ottaviani, G. and Mayer, J. W., in Howes, M. J. and Morgan, D. V. (eds.), Reliability and Degradation, Wiley, New York, 1981, Chap. 2.Google Scholar
2. Canali, C., Majni, G., Ottaviani, G. and Celotti, G., J. Appl. Phys., 50 (1979) 255.Google Scholar
3. Zheng, L. R., Hung, L. S., Mayer, J. W., Majni, G. and Ottaviani, G., Appl. Phys. Lett., 41 (1982) 646.Google Scholar
4. Hung, L. S., Zheng, L. R. and Mayer, J. W., J. Appl. Phys., 54 (1983) 792.Google Scholar
5. Canali, C., Catellani, C., Prudenziati, M., Wadlin, W. H. and Evans, C. A., Jr., Appl. Phys. Lett., 31 (1977) 43.Google Scholar
6. Blattner, R. J., Evans, C. A. Jr., Lau, S. S., Mayer, J. W. and Ullrich, B. M., J. Electrochem. Soc., 122 (1976) 1732.Google Scholar
7. Grunthaner, P. J., Grunthaner, F. J., Scott, D. M., Nicolet, M.-A. and Mayer, J. W., J. Vac. Sci. Technol., 19 (1981) 641.Google Scholar
8. Tu, K. N., Hammer, W. N. and Olowolafe, J. O., J. Appl. Phys., 51 (1980) 1663.Google Scholar
9. Petersson, S., Anderson, R., Baglin, J. E. E., Dempsey, J., Hammer, W., d'Heurle, F. and La Placa, S., J. Appl. Phys., 51 (1980) 373.CrossRefGoogle Scholar
10. Pretorius, R., Botha, A. P. and Lombaard, J. C., Thin Solid Films, 79 (1981) 6168.Google Scholar