Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T14:13:09.835Z Has data issue: false hasContentIssue false

Key Role of Aspect Ratio in Optimising Local Surface Plasmon Sensitivities of Solution Phase Triangular Silver Nanoplates

Published online by Cambridge University Press:  31 January 2011

Denise E. Charles
Affiliation:
[email protected], Trinity College Dublin, School of Physics, Dublin, Ireland
Damian Aherne
Affiliation:
[email protected], Trinity College Dublin, School of Chemistry, Dublin, Ireland
Deirdre M. Ledwith
Affiliation:
[email protected], National University of Ireland, Galway, School of Physics, Distillery Road, Galway, Galway, na, Ireland
Yurii K Gun'ko
Affiliation:
[email protected], Trinity College Dublin, School of Chemistry, Dublin, Ireland
John M Kelly
Affiliation:
[email protected], Trinity College Dublin, School of Chemistry, Dublin, Ireland
Werner J Blau
Affiliation:
[email protected], Trinity College Dublin, School of Physics, Dublin, Ireland
Margaret E Brennan-Fournet
Affiliation:
[email protected], United States
Get access

Abstract

Solution phase triangular silver nanoplate (TSNP) ensembles are herein presented as tunable, highly sensitive, LSPR sensors with excellent potential for versatile amply responsive biosensing applications. The recorded LSPR refractive index sensitivities for the highest aspect ratio TSNPs examined are amongst the highest reported to date for various other nanostructures. Calculations demonstrate that sensitivities of the TSNP sols, as high as the theoretical upper limit, are achievable by tuning the aspect ratio parameter, without any significant diminution observed due to ensemble averaging. Theoretical studies identify the aspect ratio of the nanoplates as a key parameter in controlling the LSPR sensitivity of the TSNPs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Willets, K. A. and Duyne, R. P. Van, Annu. Rev. Phys. Chem 58, 267, (2007)Google Scholar
2 Jensen, T. R., Malinsky, M. D., Haynes, C. L. and Duyne, R. P. Van, J. Phys. Chem. B 45, 10549, (2000)Google Scholar
3 Ledwith, D. M., Whelan, A. M. and Kelly, J. M., J. Mater. Chem. 23, 2459, (2007)Google Scholar
4 Johnson, R. C., Li, J., Hupp, J. T. and Schatz, G. C., Chem. Phys. Lett. 5-6, 534, (2002)Google Scholar
5 Chan, G. H., Zhao, J., Hicks, E. M., Schatz, G. C. and Duyne, R. P. Van, Nano Letters 7, 1947, (2007)Google Scholar
6 Doremus, R. H. and Rao, P., J. Mater. Res. 11, 2834, (1996)Google Scholar
7 Zhang, X. Y., Hicks, E. M., Zhao, J., Schatz, G. C. and Duyne, R. P. Van, Nano Letters 7, 1503, (2005)Google Scholar
8 Jensen, T. R., Duval, M. L., Kelly, K. L., Lazarides, A. A., Schatz, G. C. and Duyne, R. P. Van, J. Phys. Chem. B 45, 9846, (1999)Google Scholar
9 Malinsky, M. D., Kelly, K. L., Schatz, G. C. and Duyne, R. P. Van, J. Phys. Chem. B 12, 2343, (2001)Google Scholar
10 Zhao, J., Zhang, X. Y., Yonzon, C. R., Haes, A. J. and Duyne, R. P. Van, Nanomedicine 2, 219, (2006)Google Scholar
11 Haes, A. J. and Duyne, R. P. Van, J. Am. Chem. Soc. 35, 10596, (2002)Google Scholar
12 Ledwith, D., Aherne, D. and Kelly, J. M., in Metallic Nanomaterials, edited by Kumar, C. S. S. R. (Wiley-VCH: Weinheim, Germany 2009), p. 99.Google Scholar
13 Charles, D., Fournet, P., Cunningham, S., Ledwith, D., Kelly, J. M., Blau, W. and Brennan-Fournet, M. E., Plasmonics: Metallic Nanostructures and Their Optical Properties Vi, G322, (2008)Google Scholar
14 Aherne, D., Charles, D. E., Brennan-Fournet, M. E., Kelly, J. M. and Gun'ko, Y. K., Langmuir 25, 10165, (2009)Google Scholar
15 Chen, H., Kou, X., Yang, Z., Ni, W. and Wang, J., Langmuir 10, 5233, (2008)Google Scholar
16 Pastoriza-Santos, I. and Liz-Marzan, L. M., Nano Letters 8, 903, (2002)Google Scholar
17 Aherne, D., Ledwith, D. M., Gara, M. and Kelly, J. M., Adv. Funct. Mater. 14, 2005, (2008)Google Scholar
18 Charles, D. E., Aherne, D., Gara, M., Ledwith, D. M., Gun'ko, Y. K., Kelly, J. M., Blau, W. J. and Brennan-Fournet, M. E., (submitted) ACS Nano, (2009)Google Scholar
19 Wang, H., Brandl, D. W., Le, F., Nordlander, P. and Halas, N. J., Nano Letters 4, 827, (2006)Google Scholar
20 Larsson, E. M., Alegret, J., Kall, M. and Sutherland, D. S., Nano Letters 5, 1256, (2007)Google Scholar
21 Mie, G., Ann Phys 3, 377, (1908)Google Scholar
22 Miller, M. M. and Lazarides, A. A., J. Phys. Chem. B 46, 21556, (2005)Google Scholar