Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T23:42:28.074Z Has data issue: false hasContentIssue false

Investigations into Demineralized Cortical Bone

Published online by Cambridge University Press:  04 February 2011

Ekaterina Novitskaya
Affiliation:
University of California, San Diego, La Jolla, CA 92093, USA
Ana Castro-Ceseña
Affiliation:
Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, México
Po-Yu Chen
Affiliation:
University of California, San Diego, La Jolla, CA 92093, USA
Joshua Vasquez
Affiliation:
University of California, San Diego, La Jolla, CA 92093, USA
Robert Urbaniak
Affiliation:
University of California, San Diego, La Jolla, CA 92093, USA
Steve Lee
Affiliation:
University of California, San Diego, La Jolla, CA 92093, USA
Gustavo Hirata
Affiliation:
Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, México
Joanna McKittrick
Affiliation:
University of California, San Diego, La Jolla, CA 92093, USA
Get access

Abstract

Partially demineralized (DM) bone is of interest due to its promising osteointegrative properties for advanced bone grafts. Structural features of partially DM (35 vol.%, 45 vol.% and 55 vol.% reduction), and untreated cortical bone samples were studied by scanning electron microscopy. Mechanical properties were investigated by compression testing in three anatomical directions at different stages of DM. The radial direction appears to be the stiffest and strongest bone direction for the all DM stages.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Actis, A.B., Obwegeser, J.A., Ruperez, C., J Biomater Appl 18, 193 (2004).10.1177/0885328204030570Google Scholar
2. Frank, J.D., Balena, R., Masarachia, P., Seedor, J.G., Cartwright, M.E., Histochemistry 99, 295 (1993).10.1007/BF00269102Google Scholar
3. Akbay, A., Bozkurt, G., Ilgaz, O., Palaoglu, S., Akalan, N., Benzel, E.C., Eur Spine J. 17, 468 (2008).10.1007/s00586-007-0545-1Google Scholar
4. Dodds, R.A., York-Ely, A. M., Zhukauskas, R., Arola, T., Howell, J., Hartill, C., Cobb, R. R. and Fox, C., J Biomater Appl 25, 195 (2010).10.1177/0885328209345552Google Scholar
5. Olszta, M.J., Cheng, X., Jee, S.S., Kumar, R., Kim, Y.-Y., Kaufman, M.J., Douglas, E.P., Gower, L.B., Mater. Sci. Eng. R, 58 77 (2007).10.1016/j.mser.2007.05.001Google Scholar
6. Broz, J.J., Simske, S.J., and Greenberg, A.R., J. Biomechanics 28, 1357 (1995).10.1016/0021-9290(94)00184-6Google Scholar
7. Lewandrowski, K.-U., Tomford, W.W., Michaud, N. A., Schomacker, K. T., Deutsch, T. F., Calcif Tissue Int. 61 294 (1997).Google Scholar
8. Kotha, S.P., Walsh, W.R., Pan, Y., and Guzelsu, N., Bio-Medical Materials and Engineering 8, 321 (1998).Google Scholar
9. Castro-Ceseña, A.B., Novitskaya, E.E., Chen, P.-Y., Hirata, G.A., and McKittrick, J., Materials Science and Engineering C (accepted).Google Scholar
10. Toroian, D., Lim, J.L., Price, P.A., Biol, J.. Chem. 282 22437 (2007).Google Scholar
11. Chen, P-Y., Toroian, D., Price, P.A., McKittrick, J., Calc. Tiss. Intl. (accepted).Google Scholar
12. Rho, J.-Y., Kuhn-Spearing, L., and Zioupos, P., Med. Eng. Physics 20 92 (1998).10.1016/S1350-4533(98)00007-1Google Scholar
13. Fung, Y.C., “Biomechanics: Mechanical Properties of Living Tissues” (Springer-Verlag, 1981), pp. 210-211.10.1007/978-1-4757-1752-5Google Scholar
14. Fung, Y.C., “Biomechanics: Mechanical Properties of Living Tissues” (Springer-Verlag, 1981), pp. 387-388.10.1007/978-1-4757-1752-5Google Scholar