Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:31:46.975Z Has data issue: false hasContentIssue false

The Intermediate Phase in Ternary GexAsxSe1–2x Glasses

Published online by Cambridge University Press:  11 February 2011

Tao Qu
Affiliation:
Department of Electrical, Computer Engineering and Computer Science, University of Cincinnati, Ohio 45221–0030, USA
D.G. Georgiev
Affiliation:
Department of Electrical, Computer Engineering and Computer Science, University of Cincinnati, Ohio 45221–0030, USA
P. Boolchand
Affiliation:
Department of Electrical, Computer Engineering and Computer Science, University of Cincinnati, Ohio 45221–0030, USA
M. Micoulaut
Affiliation:
Department of Electrical, Computer Engineering and Computer Science, University of Cincinnati, Ohio 45221–0030, USA
Get access

Abstract

Melt-quenched AsxGexSe1–2x glasses over the composition range, 0 < x < 0.26, are examined in Raman scattering, T-modulated Differential Scanning Calorimetry (MDSC), and 119Sn Mossbauer spectroscopy measurements. The non-reversing enthalpy near Tg, ΔHnr(x), accessed from MDSC shows a global minimum (∼ 0) in the xc(1) = 0.09 < x < xc(2) = 0.16 range, and increases by an order of magnitude both at x < xc(1) and at x > xc(2). Raman mode frequency of corner-sharing Ge(Se1/2)4 tetrahedra studied as a function of x, also shows three distinct regimes (or power-laws, p) that coincide with ΔHnr(x) trends. These regimes are identified with mechanically floppy (x < xc(1)), intermediate (xc(1) < x < xc(2)), and stressed-rigid (x > xc(2)) phases. The Raman elasticity power-law in the intermediate phase, p1 = 1.04(3), and in the stressed rigid phase, p2= 1.52(5), suggest effective dimensionalities of d = 2 and 3 respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Phillips, J.C., J. Non-Cryst. Solids 34, 153181 (1979).Google Scholar
2. Thorpe, M.F., J. Non-Cryst. Solids 57, 355370 (1983).Google Scholar
3. Selvanathan, D., Bresser, W.J., Boolchand, P., Phys. Rev B 61, 15061–76 (2000).Google Scholar
4. Feng, X.W., Bresser, W.J., Boolchand, P., Phys. Rev. Lett. 78, 44224426 (1997).Google Scholar
5. Boolchand, P., Feng, X., Bresser, W.J., J. Non-Cryst. Solids, 293–295, 348356 (2001).Google Scholar
6. Georgiev, D.G., Boolchand, P., Micoulaut, M. Phys. Rev B 62, R92289231 (2000).Google Scholar
7. Georgiev, D.G., Boolchand, P., Eckert, H., Micoulaut, M., Jackson, K.A., Europhysics Letters 62, 4955 (2003).Google Scholar
8. Wang, Y., Wells, J., Georgiev, D.G., Boolchand, P., Jackson, K., Micoulaut, M., Phys. Rev. Lett. 87, 185503–1–4 (2001).Google Scholar
9. Boolchand, P., Georgiev, D.G. and Goodman, B., J. Optoelectron. Adv. Mater. 3, 703720 (2001).Google Scholar
10. Phillips, J.C., Phys. Rev. Lett. 88, 216401–4 (2003).Google Scholar
11. Thorpe, M.F., Jacobs, D.J., Chubynski, M.V., Phillips, J.C., J. Non-Cryst. Solids, 266–269, 859866 (2000).Google Scholar
12. Micoulaut, M., Phillips, J.C., Phys. Rev. B 67, 104204–9 (2003).Google Scholar
13. Thorpe, M.F., Jacobs, D.J., Chubynsky, N.V. Rader, A.J., “Generic Rigidity of Network Glasses”, Rigidity Theory and Application, ed. Thorpe, M.F. and Duxbury, P.M. (Kluwer Academic/Plenum Publishers, 1999) pp. 239277.Google Scholar
14. Wang, Fei, “Intermediate Phase and Stress in Ge1/4Se3/4-yIy Glasses”, MS Thesis, unpublished (University of Cincinnati, 2003);Google Scholar
Wang, Fei, Boolchand, P., Micoulaut, M., Jackson, K.A., Goodman, B. (unpublished).Google Scholar
15. Boolchand, P., Georgiev, D.G., Qu, T., Wang, F., Cai, L., Chakravarty, S., C.R. Chimie 5, 713724 (2003).Google Scholar
16. Micoulaut, M., Europhys. Lett. 58, 830836 (2003).Google Scholar
17. Angell, C.A., “Glass Formation and the Nature of the Glass Transition”, Insulating and Semiconducting Glasses, ed. Boolchand, P. (World Scientific Publishing Co., 2000) pp. 151.Google Scholar
18. Verdonck, E., Schaap, K., Thomas, L.C., Intl. J. of Pharmaceutics, 192, 320, (1999).Google Scholar
19. Boolchand, P., Georgiev, D.G., Micoulaut, M., J. Optoelect. Adv. Mater. 4, 823836 (2003).Google Scholar
20. Boolchand, P., “Mossbauer Spectroscopy”, Insulating and Semiconducting Glasses, ed. Boolchand, P. (World Scientific Publishing Co., 2000) pp. 191247.Google Scholar
21. Jackson, K., Srinivas, S., Kortas, J., Pederson, M., Phys. RevB 65, 214201–8 (2003).Google Scholar
22. 900 Series FT-Raman ThermoNicolet, www.thermonicolet.com Google Scholar
23. He, H. and Thorpe, M.F., Phys. Rev. Lett. 54, 21072110 (1985).Google Scholar
24. Borisova, Z.U., Glassy Semiconductors, Plenum Press, New York Google Scholar
25. Kamitakahara, W.A., et al. Phys. Rev. B 44, 94100 (1991).Google Scholar
26. Boolchand, P. and Thorpe, M.F., Phys. Rev. B 50, 1036610368 (1994).Google Scholar
27. Franzblau, D.S. and Tersoff, J., Phys. Rev. Lett. 68, 21722175 (1992).Google Scholar
28. Phillips, J.C. (private Communication).Google Scholar