Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-10-06T04:48:42.688Z Has data issue: false hasContentIssue false

Infrared Mapping of Oxygen and Correlation with Electrical Measurements on CZ Grown Wafers

Published online by Cambridge University Press:  28 February 2011

J. Whitfield
Affiliation:
MOTOROLA Semiconductor Research and Development Laboratory (SRDL) 5005 East McDowell Road Phoenix, Arizona 85008
R. Boyle
Affiliation:
MOTOROLA Semiconductor Research and Development Laboratory (SRDL) 5005 East McDowell Road Phoenix, Arizona 85008
Get access

Abstract

Spatial variation of interstitial oxygen concentrations ([Oi]) have been observed in wafers sliced from CZ grown ingots. Oxygen precipitation can occur with subsequent heat treatments causing non-uniform electrical device characteristics across a processed wafer. A new method is presented using infrared absorption measurements to map [Oi]in silicon wafers for correlation with wafer electrical measurements. The new infrared mapping method uses a spectrometer fitted with a software controllable wafer positioner. 100 m m diameter wafers were mapped to show the concentration variations and oxygen precipitation effects resulting from thermal heat treatments. Electrical measurements were made on nearly adjacent wafers from the same ingot and subjected to the same thermal cycling plus a diode-capacitor fabrication process. Two types of electrical measurements were used to map diode-capacitor arrays: reverse leakage current (Ir) and transient reverse recovery lifetime (τr. The measured values for each device tested were positionally correlated to the fourier transform infrared spectrometer (FT-IR) [Oi] data. Scatter plots were generated by plotting the electrical measurements as a function of the interpolated concentration data or differential concentration data parameterized at equivalent positions on the wafers. The scatter plots show that the electrical characteristics are strongly dependent on the precipitated oxygen (∆ [Oi]) for larger values of ∆[Oi], but nearly independent for lower ∆[Oi] values.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fuller, C. S., , Ditzenberger, Hannay, N. B., Buehler, B., Phys. Rev., 96, 833 (1954)Google Scholar
2. Kaiser, W., Frisch, H.L., Reiss, H., Phys. Rev., 112, 1546 (1958)CrossRefGoogle Scholar
3. Cazcarra, V., Zunino, P., J. Appl. Phys., 61, 4206 (1980)CrossRefGoogle Scholar
4. Kimerling, L. C., Patel, J. R., Appl. Phys. Lett., 38, 73 (1979)CrossRefGoogle Scholar
5. Kaiser, W., Keck, P. H., J. Appl. Phys., 28, 882 (1957)CrossRefGoogle Scholar
6. Pajot, B., Analysis, 5, 293 (1977)Google Scholar
7. Graff, K., Galbrath, B., Ades, S., Goldback, G., Tolg, G., Solid State Electronics, 16, 887 (1975)CrossRefGoogle Scholar
8.Annual Book of ASTM F-121-79Google Scholar
9.Annual Book of ASTM F-123-81Google Scholar
10. Patel, J. R., Chaudhini, A. R., J. Appl. Phys., 33, 2223 (1962)CrossRefGoogle Scholar
11. Erofeev, V. N., Nikitenko, V. I., Sov. Phys. Solid State, 13, 116 (1971)Google Scholar
12. Hu, S. M., Appl. Phys. Lett., 31, 53 (1977)CrossRefGoogle Scholar
13. Kock, A. J. R. de, Appl. Phys. Lett. 16, 100 (1970)CrossRefGoogle Scholar
14. Shiraki, H., Matsui, J., Kawamura, T., J. of Japan Soc. of Appl. Phys., 40, 61 (1971)Google Scholar
15. Yoshikawa, S., Chikawa, J., Appl. Phys. Lett., 23, 636 (1973)CrossRefGoogle Scholar
16. Ravi, K. V., Varker, C. J., Volk, C., J. of Electrochem. Soc., 120, 533 (1973)CrossRefGoogle Scholar
17. Varker, C. J., Ravi, K. V., J. of Appl. Phys., 45, 272 (1974)CrossRefGoogle Scholar
18. Varker, C. J., Nato Advanced Study Institute Series, ed by Zemel, J. N., Chapter 10, Plenum Press, N.Y. and London (1979)Google Scholar
19. Varker, C. J., IEEE Trans. Electronic Devices, EED–27, 2205 (1980)CrossRefGoogle Scholar
20. Tan, T. Y., Gardener, R. E., Tice, W. K., Appl. Phys. Lett., 30, 175 (1977)CrossRefGoogle Scholar
21. Rozgonyi, G. A., W, C., Pearce, Appl. Phys. Lett., 32, 747 (1978)CrossRefGoogle Scholar
22. Varker, C. J., Whitfield, J. D., Rao, K. V., Demer, L. J., “Semiconductor Silicon 1981”, ed. Huff, H., Kriegler, R. J., Takeishi, Y., p.313 (Electrochem. Soc. Princeton, N.J. 1981)Google Scholar
23. Varker, C. J., Whitfield, J. D., Fejes, P. L., Mat. Res. Soc. Symp. Proc. Vol. 14 (1983)Google Scholar
24. Varker, C. J., Whitfield, J. D., Fejes, P. L., Silicon Processing, ASTM STP 804, Gupta, D. C., Ed., A merican Society for Testing and Materials, p. 369, 1983 Google Scholar
25. Forman, R. A., Bell, M. I., Mayo, S., Kahn, A. H., J. Appl. Phys., 55, 547 (1984)CrossRefGoogle Scholar