Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T05:52:57.711Z Has data issue: false hasContentIssue false

Implanted Impurity Incorporation and Segregation Phenomena Induced by PEBA in Silicon

Published online by Cambridge University Press:  25 February 2011

G. Chaussemy
Affiliation:
Laboratoire de Physique de la Matière (LA CNRS n° 358), Institut National des Sciences Appliquées de Lyon, 20 Avenue Albert Einstein 69621 Villeurbanne Cédex France
D. Barbier
Affiliation:
Laboratoire de Physique de la Matière (LA CNRS n° 358), Institut National des Sciences Appliquées de Lyon, 20 Avenue Albert Einstein 69621 Villeurbanne Cédex France
A. Laugier
Affiliation:
Laboratoire de Physique de la Matière (LA CNRS n° 358), Institut National des Sciences Appliquées de Lyon, 20 Avenue Albert Einstein 69621 Villeurbanne Cédex France
Get access

Abstract

In this work, the PEBA induced thermal effects have been varied to study the diffusion of usual implanted impurities (P, As, Sb, In) and segregation phenomena in (100) and (111) silicon. The mean melt-front velocity has been adjusted between 1 and 4 m/s by modifying both the beam fluence and the sample starting temperature. A model for dopant redistribution has been developped, using a mean diffusion coefficient D and solving the one dimensional Fick's equation. Segregation and dopant evaporation are considered and introduced as limit conditions at the liquid-solid interface and at the wafer surface respectively. The impurity redistribution has been experimentally studied by SIMS profiling ; so that interfacial segregation coefificient Ki may be deduced from comparison between experimental and computed profiles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) WOOD, R.F., KIRKPATRICK, J.R., GILES, G.E.. Phys.Rev.B 23, 10, p.5555 (1981)Google Scholar
(2) BAERI, P., FOTI, G., POATE, J.M., CAMPISANO, S.U., REMINI, E., CULLIS, A.G.. Laser and Electron Beam Solid Interactions and Transient Thermal Processing, Gibbons, J.F., Hess, L.D., Sigmon, T.W. eds (Nort Holland, New York, 1981) p.67Google Scholar
(3) CHEMISKY, G., BARBIER, D., LAUGIER, A.. Journ. of Crystal Growth 66, p.215 (1984)Google Scholar
(4) JACKSON, K.A., GILMER, G.H., LEAMY, H.J.. Laser and Electron Beam Processing of Materials, White, C.W., Peircy, P.S. eds (Academic Press, New York 1980) p.104Google Scholar
(5) MOREHEAD, F.. Laser and Electron Beam Processing of Materials, White, C.W., Peircy, P.S. eds (Academic Press New York, 1980) 143Google Scholar
(6) LAUGIER, A., BARBIER, D., CHEMISKY, G.. Proceedings of the 4th E.C. Photovoltaic Solar Energy Conference, D. Reidel Publishing Company, p.1007 (1982)Google Scholar
(7) WHITE, C.W., WILSON, S.R., APPLETON, B.R., YOUNG, F.W.. J.A.P. 51, 1, p.736 (1980)Google Scholar
(8) KODERA, H.. Jps J.A.P. 2, p.212 (1965)Google Scholar
(9) GILMER, H.. Laser Solid Interactions and Transient Thermal Processing of Materials, Narayan, J., Brown, W.L., Lemons, R.A. eds (North Holland, New York, 1983) p.249 Google Scholar