Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T18:01:25.305Z Has data issue: false hasContentIssue false

Hybrid active polymer/silica microstructured photonic crystal optical fibers

Published online by Cambridge University Press:  15 March 2011

B. J. Eggleton
Affiliation:
Also with Specialty Fiber Devices, OFS Fitel, Somerset, NJ 08873, U.S.A Phone: 908 582 3087, Fax: 908 582 6055, Email: [email protected]
C. Kerbage
Affiliation:
OFS Fitel Laboratoriess, Murray Hill, NJ 07974
Get access

Abstract

We review several applications of microstructured photonic crystal optical fibers that incorporate active materials infused into the air-holes. The tunable optical characteristics of the materials combined with the unique structure of the fiber enable a number of functionalities including reconfigurability and tunability for various fiber device applications. We describe a brief characterization of the modes and discuss the experimental results of the fibers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kaiser, P.V., and Astle, H. W., The Bell System Technical Journal 53, 10211039 (1974).Google Scholar
2. Broeng, J., Mogilevstev, D., Barkou, S. E., and Bjarklev, A., Optical Fiber Technology vol. 5, 305330 (1999).Google Scholar
3. Knight, J.C., Birks, T.A., Cregan, R.F., Russell, P.S.J., and Sandro, J. P., Optical Materials 11, 143151 (1999).Google Scholar
4. Cregan, R. F., Mangan, B. J., Knight, J. C., Birks, T. A., Russell, P. S. J., Roberts, P. J., and Allan, D. C., Science 285, 15371539 (1999).Google Scholar
5. Monro, T.M., Belardi, W., Furusawa, K., Baggett, J.C., Broderick, N.G.R., and Richardson, D. J., Measurement Science & Technology 12, 854858 (2001).Google Scholar
6. Birks, T. A., Knight, J. C., and Russell, P. S. J., Opt. Lett. 22, 961963 (1997).Google Scholar
7. Birks, T. A., Mogilevstev, D., Knight, J. C., and Russell, P. S. J., IEEE Phot. Tech. Lett 11, 674676 (1999).Google Scholar
8. Ranka, J. K., Windeler, R. S., and Stentz, A. J., Opt. Lett. 25, 796798 (2000).Google Scholar
9. Monro, T. M., Richardson, D. J., Broderick, N. G. R., and Bennet, P. J., J. Lightwave Tech. 17, 10931102 (1999).Google Scholar
10. Knight, J.C., Birks, T.A., Cregan, R.F., Russell, P.S.J., and Sandro, J. P., Opt. Lett. 25, 2527 (1998).Google Scholar
11. Kerbage, C., Eggleton, B.J., Westbrook, P.S., and Windeler, R. S., Optics Express 7, 113123 (2000).Google Scholar
12. Eggleton, B.J., Westbrook, P.S., White, C.A., Kerbage, C., Windeler, R.S., and Burdge, G. L., J. Lightwave Tech. 18, 10841100 (2000).Google Scholar
13. Westbrook, P. S., Eggleton, B. J., Windeler, R. S., Hale, A., Strasser, T. A., and Burdge, G. L., OFC 2000 ThI3.Google Scholar
14. Kerbage, C., Mach, P., Dolinski, M., Windeler, R.S., Rogers, J.A., and Eggleton, B. J., Optics Communications (to be published).Google Scholar
15. Kerbage, C., Mach, P., Dolinski, M., Windeler, R.S., Rogers, J.A., and Eggleton, B. J., OFC Conference (2002).Google Scholar
16. Kerbage, C., Hale, A., Yablon, A., Windeler, R. S., and Eggleton, B. J., App. Phys. Lett. in press (2001).Google Scholar
17. Steel, M.J., White, T.P., Sterke, C. Martijn de, McPhedran, R.C., and Botten, L. C., Opt. Lett. 26, 488490 (2001).Google Scholar
18. McISAAC, P. R., IEEE Trans. Micro. Wave Theory and Tech. MTT–23, 421429 (1975).Google Scholar