Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T07:12:45.546Z Has data issue: false hasContentIssue false

High-Temperature Operation of Pentacene Field-Effect Transistors with Polyimide Gate Insulators

Published online by Cambridge University Press:  01 February 2011

Tsuyoshi Sekitani
Affiliation:
Quantum-Phase Electronics Center, School of Engineering, the University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Shingo Iba
Affiliation:
Quantum-Phase Electronics Center, School of Engineering, the University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Yusaku Kato
Affiliation:
Quantum-Phase Electronics Center, School of Engineering, the University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Yoshiaki Noguchi
Affiliation:
Quantum-Phase Electronics Center, School of Engineering, the University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Takao Someya
Affiliation:
Quantum-Phase Electronics Center, School of Engineering, the University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Takayasu Sakurai
Affiliation:
Center for Collaborative Research, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Get access

Abstract

We have fabricated pentacene field-effect transistors (FETs) on polyimide-sheet films with polyimide gate dielectric layers and parylene encapsulation layer, and investigated the high-temperature performance. It is found that the mobility of encapsulated FETs is enhanced from 0.5 to 0.8 cm2/Vs when the device is heated from room temperature to 160°C under light-shielding nitrogen environment. Furthermore, after the removal of annealing temperatures up to 160°C, the transistor characteristic of mobility and on/off current ratio show no significant changes, demonstration the excellent thermal stability of the present organic FETs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rogers, J. A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V. R., Kuck, V., Katz, H., Amundson, K., Ewing, J., and Drzaic, P., Proc. Natl. Acad. Sci. U.S.A. 98, 4835 (2001).Google Scholar
2 Sheraw, C. D., Zhou, L., Huang, J. R., Gundlach, D. J., Jackson, T. N., Kane, M. G., Hill, I. G., Hammond, M. S., Campi, J., Greening, B. K., Francl, J., and West, J., Appl. Phys. Lett. 80, 1088 (2002).Google Scholar
3 Baude, P. F., Ender, D. A., Haase, M. A., Kelley, T. W., Muyres, D. V., and Theiss, S. D., Appl. Phys. Lett. 82, 3964 (2003).Google Scholar
4 Drury, C. J., Mutsaers, C. M. J., Hart, C. M., Matters, M., and Leeuw, D. M. de, Appl. Phys. Lett. 73, 108110 (1998).Google Scholar
5 Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., and Sakurai, T., Proc. Natl. Acad. Sci. U.S.A. 101, 9966 (2004).Google Scholar
6 Kawaguchi, H., Someya, T., Sekitani, T., and Sakurai, T., IEEE J. Solid-State Circuits. 40, 177 (2005).Google Scholar
7 Kang, S. J., Noh, M., Park, D. S., Kim, H. J., Whang, C. N., C. –H. Chang, J. Appl. Phys. 95, 2293 (2004).Google Scholar
8 Kato, Y., Iba, S., Teramoto, R., Sekitani, T., Someya, T.. Kawaguchi, H., and Sakurai, T., Appl. Phys. Lett. 84, 3789 (2004).Google Scholar
9 Sekitani, T., Kato, Y., Iba, S., Shinaoka, H., Someya, T., Sakurai, T., and Takagi, S., Appl. Phys. Lett. 86, 073511 (2005).Google Scholar
10 Sekitani, T., Iba, S., Kato, Y., and Someya, T., Appl. Phys. Lett. 85, 3902 (2004).Google Scholar