Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T09:03:07.501Z Has data issue: false hasContentIssue false

High Collection Efficiency Thin Film Diamond Particle Detectors

Published online by Cambridge University Press:  10 February 2011

P. Bergonzo
Affiliation:
LETI (CEA-Technologies Avances)/DEIN/SPE, CEA/ Saclay, 91191 Gif-sur-Yvette Cedex, France. [email protected]
F. Foulon
Affiliation:
LETI (CEA-Technologies Avances)/DEIN/SPE, CEA/ Saclay, 91191 Gif-sur-Yvette Cedex, France. [email protected]
R. D. Marshall
Affiliation:
LETI (CEA-Technologies Avances)/DEIN/SPE, CEA/ Saclay, 91191 Gif-sur-Yvette Cedex, France. [email protected]
C. Jany
Affiliation:
LETI (CEA-Technologies Avances)/DEIN/SPE, CEA/ Saclay, 91191 Gif-sur-Yvette Cedex, France. [email protected]
A. Brambilla
Affiliation:
LETI (CEA-Technologies Avances)/DEIN/SPE, CEA/ Saclay, 91191 Gif-sur-Yvette Cedex, France. [email protected]
R. D. Mckeag
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London, WC IE 7JE, UK. [email protected]
R. B. Jackman
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London, WC IE 7JE, UK. [email protected]
Get access

Abstract

Diamond is a resilient material with rather extreme electronic properties. As such it is an interesting candidate for the fabrication of high performance solid state particle detectors. However, the commercially accessible form of diamond, grown by chemical vapour deposition (CVD) methods, is polycrystalline in nature and often displays rather poor electrical characteristics. This paper considers ways in which this material may be used to form alpha particle detectors with useful performance levels. One approach adopted has been to reduce the impurity levels within the feed-stock gases that are used to grow the diamond films. This has enabled significant improvements to be achieved in the mean carrier drift distance within the films leading to alpha detectors with up to 40% collection efficiencies. An alternative approach explored is the use of planar device geometries whereby charge collection is limited to the top surface of the diamond which comprises higher quality material than the bulk of the film. This has lead to collection efficiencies of 70%, the highest yet reported for polycrystalline CVD diamond based detectors. Techniques for improving the characteristics of these devices further are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kozlov, S.F., Konorova, E.A., Krapivin, M.I., Nadein, V.A. and Yudina, V.G. IEEE Trans. on Nucl. Sci. 24, 242 (1977).Google Scholar
2. Foulon, F, Pochet, T., Gheeraert, E. and Deneuville, A. IEEE Trans. Nucl. Sci., 41, 927 (1994)Google Scholar
3. McKeag, R.D., Chan, S.S.M. and Jackman, R.B. Appl. Phys. Letts., 67, 2117 (1995)Google Scholar
4. Whitfield, M.D., Chan, S.S.M. and Jackman, R.B. Appl. Phys. Letts., 68, 290 (1996)Google Scholar
5. Pochet, T., Brambilla, A., Bergonzo, P, Foulon, F., Jany, C. and Gicquel, A. Ital. Phys. Soc., Conf. Proc. (Eurodiamond '96) 52, 111 (1996)Google Scholar
6. Mainwood, A., Diam. & Relat. Mater., (In Press)Google Scholar
7. Landstrass, M.I., Piano, M.A., Moreno, M.A., McWilliams, S., Pan, L.S., Kania, D.R. and Han, S. Diam. & Relat. Mat., 2, 1033 (1993)Google Scholar
8. Gildenblat, G. Sh., Grot, S.A., and Badzian, A. Proc. IEEE 79, 647 (1991)Google Scholar
9. Jany, C., Foulon, F., Bergonzo, P., Brambilla, A., Gicquel, A. and Pochet, T. Nuci. Inst. & Meth., A–380, 107 (1996)Google Scholar
10. Jany, C., Bergonzo, P., Foulon, F., Tardieu, A. and Gicquel, A. J. Electrochem. Soc., (In Press)Google Scholar
11. Baral, B., Chan, S.S.M., and Jackman, R.B. J. Vac. Sci. Technol. A14, 2303 (1996)Google Scholar
12. Foulon, F., Bergonzo, P., Brambilla, A., Jany, C., Guizard, B. and Marshall, R.D. Proc. Mat. Res. Soc., (Symp. I, Fall meeting 1997, In Press)Google Scholar
13. Hecht, K., Zeitschrift Fur Phys., 77, 235 (1932)Google Scholar
14. Piano, M. A., Zhao, S., Gardinier, C. F., Landstrass, M. I., Kania, D. R., Kagan, H., Gan, K.K., Kass, R., Pan, L.S., Han, S., Schnetzer, S. and Stone, R. Appl. Phys. Lett. 64, 193 (1994)Google Scholar
15. McKeag, R.D., Marshall, R.D., Baral, B., Chan, S.S.M. and Jackman, R.B. Diam. & Relat. Mater., 6, 374 (1997)Google Scholar
16. McKeag, R.D. and Jackman, R.B. Diam. & Relat. Mater., (In Press)Google Scholar