Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T00:55:48.863Z Has data issue: false hasContentIssue false

Helium Migration Mechanisms in Polycrystalline Uranium Dioxide

Published online by Cambridge University Press:  19 October 2011

Guillaume Martin
Affiliation:
[email protected], CNRS, CERI, 3 A rue de la Ferollerie, ORLEANS, 45071, France, +33 238 257 646, +33 238 630 271
Pierre Desgardin
Affiliation:
[email protected], CNRS, CERI, 3 A rue de la Ferollerie, ORLEANS, 45071, France
Philippe Garcia
Affiliation:
[email protected], CEA Cadarache, DEN/DEC/SESC/LLCC, Saint Paul Lez Durance, 13108, France
Thierry Sauvage
Affiliation:
[email protected], CNRS, CERI, 3 A rue de la Ferollerie, ORLEANS, 45071, France
Gaëlle Carlot
Affiliation:
[email protected], CEA Cadarache, DEN/DEC/SESC/LLCC, Saint Paul Lez Durance, 13108, France
Marie-France Barthe
Affiliation:
[email protected], CNRS, CERI, 3 A rue de la Ferollerie, ORLEANS, 45071, France
Get access

Abstract

This study aims at identifying the release mechanisms of helium in uranium dioxide. Two sets of polycrystalline UO2 sintered samples presenting different microstructures were implanted with 3He ions at concentrations in the region of 0.1 at.%. Changes in helium concentrations were monitored using two Nuclear Reaction Analysis (NRA) techniques based on the 3He(d,α)1H reaction. 3He release is measured in-situ during sample annealing at temperatures ranging between 700°C and 1000°C. Accurate helium depth profiles are generated after each annealing stage. Results that provide data for further understanding helium release mechanisms are discussed. It is found that helium diffusion appears to be enhanced above 900°C in the vicinity of grain boundaries possibly as a result of the presence of defects.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sauvage, T., Trasbot, J. P., Wendling, O., Tessier, Y., Dumont, J. C., Desgardin, P., Martin, G., not yet submitted.Google Scholar
2. Martin, G., Sauvage, T., Garcia, P., Desgardin, P., Carlot, G., Barthe, M. F., Nucl. Instr. & Meth. B, (2007) (in press).Google Scholar
3. Martin, G., Garcia, P., Labrim, H., Sauvage, T., Carlot, G., Desgardin, P., Barthe, M. F., Piron, J. P., J. Nucl. Mat. 357, 198205 (2006).Google Scholar
4. Martin, G., Desgardin, P., Sauvage, T., Garcia, P., Carlot, G., Khodja, H., Barthe, M. F., Nucl. Instr. & Meth. B 249, 509512 (2006).Google Scholar
5. Barthe, M. F., Labrim, H., Gentils, A., Desgardin, P., Corbel, C., Esnouf, S., Piron, J. P., submitted for publication in Physica Status Solidii C.Google Scholar
6. Lee, K. Y., Case, E. D., Eur. Phys. J. AP. 8, 197214 (1999).Google Scholar