Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T01:08:30.132Z Has data issue: false hasContentIssue false

Grating Coupled Surface Plasmon Resonance Enhanced Fluorescence and Its Application for Cell Observation

Published online by Cambridge University Press:  31 January 2011

Xiaoqiang Cui
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Cell Engineering, Osaka, Japan
Keiko Tawa
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Cell Engineering, Osaka, Japan
Junji Nishii
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Cell Engineering, Osaka, Japan
Get access

Abstract

One-dimensional grating with 400 nm pitch was fabricated on a SiO2 glass surface. The grating was applied for detection of fluorescence excited by the electric field of the grating-coupled surface plasmon resonance and highly sensitive observation of fluorescence image by optical microscope. 40-times of fluorescence enhancement was obtained under optimal condition after our systematically investigating depth and duty ratio dependent behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fort, E. and Gresillon, S., J. Phys. D: Appl. Phys. 41, 0313001 (2008).Google Scholar
2 Phillips, K. S. and Cheng, Q., Anal. Bioanal.Chem. 387, 1831 (2007).Google Scholar
3 Fu, Y., Zhang, J., and Lakowicz, J. R., J Fluoresc. 17, 811 (2007).Google Scholar
4 Zhang, J., Fu, Y., Chowdhury, M. H., and Lakowicz, J. R., Nano Lett. 7, 2101 (2007).Google Scholar
5 Xie, F., Baker, M. S., and Goldys, E. M., Chem. Mater. 20, 1788 (2008).Google Scholar
6 Cheng, D. M. and Xu, Q. H., Chem. Comm., 248 (2007).Google Scholar
7 Akiyama, T., Nakada, M., Terasaki, N., and Yamada, S., Chem. Comm., 395 (2006).Google Scholar
8 Tawa, K., Yao, D. F., and Knoll, W., Biosens. Bioelectron. 21, 322 (2005).Google Scholar
9 Tawa, K. and Knoll, W., Nucleic Acids Res. 32, 2372 (2004).Google Scholar
10 Raether, H., Surface plasmons on smooth and rough surfaces and on gratings. (Springer, Berlin, 1988).Google Scholar
11 Knoll, W., Annu. Rev. Phys. Chem. 49, 569 (1998).Google Scholar
12 Popov, E., Bonod, N., and Enoch, S., Opt. Express 15, 4224 (2007).Google Scholar
13 Hung, Y. J., Smolyaninov, I. I., Davis, C. C., and Wu, H. C., Opt. Express 14, 10825 (2006).Google Scholar
14 Chiu, N. F., Yu, C., Nien, S. Y., Lee, J. H., Kuan, C. H., Wu, K. C., Lee, C. K., and Lin, C. W., Opt. Express 15, 11608 (2007).Google Scholar
15 Tawa, K., Hori, H., Kintaka, K., Kiyosue, K., Tatsu, Y., and Nishii, J., Opt. Express 16, 9781 (2008).Google Scholar
16 Kintaka, K., Nishii, J., Mizutani, A., Kikuta, H., and Nakano, H., Opt. Lett. 26, 1642 (2001).Google Scholar
17 Nishii, J., Kintaka, K., Kawamoto, Y., Mizutani, A., and Kikuta, H., J. Ceram. Soc. Jpn. 111, 24 (2003).Google Scholar
18 Morigaki, K. and Tawa, K., Biophys. J. 91, 1380 (2006).Google Scholar
19 Tawa, K. and Morigaki, K., Biophys. J. 89, 2750 (2005).Google Scholar
20 Hori, H., Tawa, K., Kintaka, K., Nishii, J, and Tatsu, Y., Opt. Rev., 16, 216 (2009).Google Scholar