Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:41:22.921Z Has data issue: false hasContentIssue false

Grain Boundaries, Planar Defects and Superconducting Properties of YBa2Cu3O7

Published online by Cambridge University Press:  28 February 2011

J. Tafto
Affiliation:
Division of Materials Science, Department of Applied Science, Brookhaven National Laboratory, Upton, NY 11973
M. Suenaga
Affiliation:
Division of Materials Science, Department of Applied Science, Brookhaven National Laboratory, Upton, NY 11973
T. Wang
Affiliation:
Division of Materials Science, Department of Applied Science, Brookhaven National Laboratory, Upton, NY 11973 Department of Materials Science, State University of New York at Stony Brook, Stony Brook, NY 11790
R. L. Sabatini
Affiliation:
Division of Materials Science, Department of Applied Science, Brookhaven National Laboratory, Upton, NY 11973
A. R. Moodenbaugh
Affiliation:
Division of Materials Science, Department of Applied Science, Brookhaven National Laboratory, Upton, NY 11973
S. Levine
Affiliation:
Department of Materials Science, State University of New York at Stony Brook, Stony Brook, NY 11790
Get access

Abstract

Polycrystalline samples of tetragonal YBa2Cu3O6.25 were transformed into the superconducting orthorhombic phase by annealing in an oxygen atmosphere at temperatures ranging from 400–850°C and then slowly cooled to room temperature (15°C/h). Transmission electron microscopy (TEM) images of these samples and samples prepared in the usual way show layers of amorphous or highly disordered material, several 100 nm thick, at a large fraction of the grain boundaries. Also all samples contain 10–100 nm thick sheets of disordered material which lie in the a-b planes and tend to run through the entire crystal grain. In the a-b planes we also observe dislocation loops, particularly in the as-quenched tetragonal samples and stacking faults in the heat-treated samples. We also frequently observe set of twins with orthogonal habit planes within a crystal grain. We attribute the low critical current density in YBa2Cu3O7 to these planar faults and the disordered grain boundary regions, and discuss the TEM observations with reference to resistivity and inductive measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bednorz, J. G. and Müller, K. A., Z. Phys. B64, 189 (1986).Google Scholar
2. Chu, C. W., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., and Wang, Y. O., Phys. Rev. Lett. 58, 405 (1987).Google Scholar
3. Enomoto, Y., Murakami, T., Suzuki, M., and Moriwaki, K., Jpn. J. Appl. Phys., 26 L1248 (1987).Google Scholar
4. Suenaga, M., Ghosh, A., Asano, T., Sabatini, R. L., and Moodenbaugh, A. R. in Proc. Mater. Res. Soc. Meeting, Anaheim, April 1987, in press.Google Scholar
5. Fang, M. M., Kogan, V.G., Finnemore, D. K., Clem, J. R., Chumbley, L. S., and Farrell, D. E., submitted to Phys. Rev. B.Google Scholar
6. Chandhari, P., LeGouls, F. K., and Segmuller, Armin, Science 238, 342 (1987).Google Scholar
7. Umezawa, A., Crabtree, G. W., Liu, J. Z., Weber, H. W., Kwok, W. K., Nunez, L. H., Moran, T. J., Sowers, C. H., and Claus, H., submitted to Phys. Rev. B.Google Scholar
8. Cava, R. J., Batlogg, B., van Dover, R. B., Murphy, D. W., Sunshine, S., Siegrist, T., Remeika, J. P., Rietman, E. A., Zahurak, S., and Espinosa, G. P., Phys. Rev. Lett. 58, 1676 (1987).Google Scholar
9. Gallagher, P. K., O'Bryan, H. M., Sunshine, S. A., and Murphy, D. W., Mater. Res. Bull. 22 995 (1987),Google Scholar
10. Camps, R. A., Evetts, J. E., Glowacki, B. A., Newcomb, S. B., Somekh, R. E., and Stobbs, W. M., Nature 329, 229 (1987).Google Scholar
11. Cava, R. J., Batlogg, B., Chen, C. H., Rietman, E. A., Zahurak, S. M., and Werder, D., Nature 329, 423 (1987).Google Scholar