Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T03:38:34.672Z Has data issue: false hasContentIssue false

GeTe-filled Carbon Nanotubes for Data Storage Applications

Published online by Cambridge University Press:  01 February 2011

Cristina E. Giusca
Affiliation:
[email protected], University of Surrey, Advanced Technology Institute, Guildford, United Kingdom
Vlad Stolojan
Affiliation:
[email protected], University of Surrey, Advanced Technology Institute, Guildford, United Kingdom
Jeremy Sloan
Affiliation:
[email protected], University of Warwick, Department of Physics, Coventry, United Kingdom
Hidetsugu Shiozawa
Affiliation:
[email protected], University of Surrey, Advanced Technology Institute, Guildford, United Kingdom
Ravi Silva
Affiliation:
[email protected], University of Surrey, Advanced Technology Institute, Guildford, United Kingdom
Get access

Abstract

By virtue of their unique electronic properties, nanometer-diameter sized single-walled carbon nanotubes represent ideal candidates to function as active parts of nanoelectronic memory storage devices. We show for the first time that GeTe, a phase change material, currently considered to be one of the most promising materials for data-storage applications, can efficiently be encapsulated within single-walled carbon nanontubes of 1.4 nm diameter. Structural investigations on the encapsulated GeTe nanowires have been carried out by high resolution transmission electron microscopy. The electronic interactions between the filling material and the host nanotube have been examined using ultraviolet photoelectron spectroscopy experiments and show that the electronic structure of the encapsulating nanotube and that of the encased filling are not perturbed by the presence of each of the other component.

The newly formed hybrids offer potential to operate as active elements in non-volatile electronic memory storage devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bichoutskaia, E. Popov, A. M. Lozovik, Y. E. Materials Today, 11, 6, 38, (2008).Google Scholar
2 Rueckes, T. et al. Science 289, 94, (2000).Google Scholar
3 Carter, R. Sloan, J. Kirkland, A.I. et al. , Phys. Rev. Lett. 96, 215501, (2006).Google Scholar
4 Meyer, R.R. et al. , Science 289, 1324, (2000).Google Scholar
5 Philp, E. Sloan, J. Kirkland, A.I. Meyer, R.R. Friedrichs, S. Hutchison, J.L. Green, M.L.H. Nature Mater., 2, 788 (2003).Google Scholar
6 Sloan, J. Carter, R. et al. , Microscopy of Semic. Mat. 120, 213, (2008).Google Scholar
7 Chen, M. Rubin, K. A. Barton, R. W. Appl. Phys. Lett. 49, 9, 502, (1986).Google Scholar
8 Lankhorst, M. H. Ketelaars, B. W. and Wolters, R. A. Nature Mater. 4, 266, (2005).Google Scholar
9 Chung, H. B. Shin, K. Lee, J. M. J. Vac. Sci. Technol. A 25, 1, 48, (2007).Google Scholar
10 Wuttig, M. Yamada, N. Nature Mater. 6, 824, (2007).Google Scholar
11 Raoux, S. et al. , IBM J. Res. & Dev. 52, 4/5, July/September, (2008).Google Scholar
12 Raoux, S. Annu. Rev. Mater. Res. 39, 25, (2009).Google Scholar
13 Lee, S.-H. Jung, Y. Agarwal, R. Nature Nanotech. 2, 626, (2007).Google Scholar
14 Raoux, S. Rettner, C. T. Jordan-Sweet, J. L., Kellock, A. J. Topuria, T. Rice, P. M. and Miller, D. C., J. Appl. Phys. 102, 9, 94305 (2007).Google Scholar
15 Sloan, J. Kirkland, A. Hutchison, J. L. and Green, M. L. H. Chem. Commun. 1319 (2002).Google Scholar
16 Hosokawa, S. Hari, Y. Kouchi, T. Ono, I. Sato, H. Taniguchi, M. Hiraya, A. Takata, Y. Kosugi, N., Watanabe, M. J. Phys.: Condens. Matter 10, 1931, (1998).Google Scholar
17 Rauf, H. Shiozawa, H. Pichler, T. Knupfer, M. B, Buchner, Kataura, H. Phys. Rev. B 72, 245411 (2005).Google Scholar
18 Suzuki, S. Bower, C. Watanabe, Y. Zhou, O. Appl. Phys.Lett. 76 4007, (2000).Google Scholar