Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T18:49:53.223Z Has data issue: false hasContentIssue false

Geometric and Electronic Structure of Fullerene Film Growth as a Function of Coverage

Published online by Cambridge University Press:  15 February 2011

B. Reihl*
Affiliation:
IBM Research Division, Zurich Research Laboratory, 8803 Rüischlikon, Switzerland
Get access

Abstract

We have employed scanning tunneling microscopy at room and low temperature, i.e. 300, 50, and 5 K, to study the epitaxy and growth of fullerene films on the noble-metal surfaces Ag(110) and Au(110). Initial island growth occurs on terrace sites away from substrate step edges. Particularly at low temperatures where the rotational and vibrational movements of the fullerene molecules are frozen in, different intra-molecular topographic patterns become visible in ordered films, which are characteristic of particular adsorption sites. Complementary tunneling spectroscopy and direct and inverse photoemission measurements reveal distinct differences between the first adsorbed monolayer and additional fullerene layers indicating differences in bonding and charge transfer. Our results are compared to theoretical calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Krätschmer, A., Fostiropoulos, K., and Huffman, D.R., Chem. Phys. Lett. 170, 167 (1990).Google Scholar
2. For a review see Prassides, K. and Kroto, H., Physics World 5,44 (1992).Google Scholar
3. For a review see Hebard, A.F., Physica B 197, 544 (1994).Google Scholar
4. Takahashi, T., et al. , Phys. Rev. Lett. 68, 1232 (1992).Google Scholar
5. Benning, P.J., et al. , Phys. Rev. B 45, 6899 (1992).Google Scholar
6. Weaver, J.H., et al. , Phys. Rev. Lett. 66, 1741 (1991).Google Scholar
7. Wu, S.C., et al. , Phys. Rev. B 47, 13830 (1993).Google Scholar
8. Ohno, T.R., et al. , Phys. Rev. B 44, 13747 (1991).Google Scholar
9. Gensterblum, G., et al. , Phys. Rev. Lett. 67, 2171 (1991).Google Scholar
10. Kuk, Y., et al. , Phys. Rev. Lett. 70, 1948 (1993).Google Scholar
11. Wang, X.- D., et al. , Phys. Rev. B 47, 15923 (1993).Google Scholar
12. Rabenau, T., Simon, A., Kremer, R.K., and Sohmen, E., Z. Phys. B 90, 69 (1993).Google Scholar
13. Lof, R.W., et al. , Phys. Rev. Lett. 68, 3924 (1992).Google Scholar
14. Saito, S. and Oshiyama, A., Phys. Rev. Lett. 66, 2637 (1991).Google Scholar
15. Erwin, S.C. and Pederson, M.R., Phys. Rev. Lett. 67, 1610 (1991).Google Scholar
16. Woo, S.J., Kim, E., and Lee, Y.H., Phys. Rev. B 47, 6721 (1993).Google Scholar
17. Troullier, N. and Martins, J.L., Phys. Rev. B 46, 1754 (1992).Google Scholar
18. Shirley, E.L. and Louie, S.G., Phys. Rev. Lett. 71, 133 (1993).Google Scholar
19. Gaisch, R., et al. , Appl. Phys. A 57, 207 (1993).Google Scholar
20. Berndt, R., et al. , Appl. Phys. A 57, 513 (1993).Google Scholar
21. Berndt, R., et al. , SCIENCE 262, 1425 (1993).Google Scholar
22. Gaisch, R., et al. , J. Vac. Sci. Technol. B 12, 2153 (1994).Google Scholar
23. Berndt, R., et al. , Surf. Sci. 307–309, 1033 (1994).Google Scholar
24. Reihl, B., et al. , Physica B 197, 64 (1994).Google Scholar
25. Gimzewski, J.K., Modesti, S., and Schlittler, R.R., Phys. Rev. Lett. 72, 1036 (1994).Google Scholar
26. David, T., et al. , Phys. Rev. B 50, 5810 (1994).Google Scholar
27. Gaisch, R., et al. , Ultramicroscopy 42–44, 1621 (1992).Google Scholar
28. Motai, K., et al. , Jpn. J. Appl. Phys. 32, L450 (1993).Google Scholar
29. Altman, E.I. and Colton, R.J., Surf. Sci. 295, 13 (1993).Google Scholar
30. Purdie, D., Bernhoff, H., and Reihl, B. (unpublished).Google Scholar
31. Horn, K., Frank, K.H., Wilder, J.A., and Reihl, B., Phys. Rev. Lett. 57, 1064 (1986).Google Scholar
32. Maxwell, A.J., et al. , Phys. Rev. B 49, 10717 (1994).Google Scholar
33. Debever, J.M., et al. , Phys. Rev. B 46, 15602 (1992).Google Scholar
34. Gu, B.-L., et al. , Phys. Rev. B 49, 16202 (1994).Google Scholar
35. Jost, M.B., et al. , Phys. Rev. B 44, 1966 (1991).Google Scholar
36. Li, Y.Z., et al. , Phys. Rev. B 47, 10867 (1993).Google Scholar
37. Wang, X.- D., et al. , Phys. Rev. B 47, 15923 (1993).Google Scholar
38. Howells, S., et al. , Surf. Sci. 274, 141 (1992).Google Scholar
39. Chen, T., et al. , J. Vac. Sci. Technol. B 9, 2461 (1991).Google Scholar
40. Lang, H.P., et al. , Europhys. Lett. 18, 29 (1992).Google Scholar
41. Hashizume, T., et al. , Jpn. J. Appl. Phys. 31, L880 (1992).Google Scholar
42. Behler, S., et al. , Z. Phys. B 91, 1 (1993).Google Scholar
43. Tersoff, J. and Lang, N.D., Phys. Rev. Lett. 65, 1132 (1990).Google Scholar
44. Fisher, A.J. and Blöchl, P.E., Phys. Rev. Lett. 70, 3263 (1993).Google Scholar
45. Chavy, C., Joachim, C., and Altibelli, A., Chem. Phys. Lett. 214, 569 (1993).Google Scholar
46. Gaisch, R., Ph.D. Thesis, University of Lausanne, Switzerland, 1994 (unpublished).Google Scholar
47. Otto, A., et al. , J. Phys.: Condens. Matter 4, 1143 (1992).Google Scholar
48. Berndt, R., Gimzewski, J.K., and Johansson, P., Phys. Rev. Lett. 67, 3796 (1991).Google Scholar