Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T07:03:31.251Z Has data issue: false hasContentIssue false

GaN Homoepitaxy for Device Applications

Published online by Cambridge University Press:  10 February 2011

M. Kamp
Affiliation:
Dept. of Optoelectronics, University of Ulm, 89069 Ulm, Germany, Tel.: +49-731-5026050, Fax: +49-731-5026049, e-mail: [email protected]
C. Kirchner
Affiliation:
Dept. of Optoelectronics, University of Ulm, 89069 Ulm, Germany, Tel.: +49-731-5026050, Fax: +49-731-5026049, e-mail: [email protected]
V. Schwegler
Affiliation:
Dept. of Optoelectronics, University of Ulm, 89069 Ulm, Germany, Tel.: +49-731-5026050, Fax: +49-731-5026049, e-mail: [email protected]
A. Pelzmann
Affiliation:
Dept. of Optoelectronics, University of Ulm, 89069 Ulm, Germany, Tel.: +49-731-5026050, Fax: +49-731-5026049, e-mail: [email protected]
K.J. Ebeling
Affiliation:
Dept. of Optoelectronics, University of Ulm, 89069 Ulm, Germany, Tel.: +49-731-5026050, Fax: +49-731-5026049, e-mail: [email protected]
M. Leszczynski
Affiliation:
High Pressure Research Center, Warsaw, Poland
I. Grzegory
Affiliation:
High Pressure Research Center, Warsaw, Poland
T. Suski
Affiliation:
High Pressure Research Center, Warsaw, Poland
S. Porowski
Affiliation:
High Pressure Research Center, Warsaw, Poland
Get access

Abstract

Epitaxial growth on GaN single bulk crystals sets new standards in GaN material quality. The outstanding properties provide new insights into fundamental material parameters (e.g. lattice constants, exciton binding energies, etc.) being not accessible by heteroepitaxial growth on sapphire or SiC. With MOVPE and MBE we realized unstrained GaN layers with dislocation densities about six orders of magnitude lower than in heteroepitaxy. Those layers revealed an exceptional optical quality as determined by a reduction of the photoluminescence linewidth from 5 to 0.1 meV and a reduced XRD rocking curve width from 400 to 20 arcsec.

Only recently, progress in surface preparation allowed morphologies of the layers suitable for device applications. We report on InGaN/GaN MQW structures as well as the first GaN pn- and InGaN/GaN double heterostructure LEDs on GaN single bulk crystals. Those LEDs are twice as bright as their counterparts grown on sapphire. In addition they reveal an improved high power characteristics, which is attributed to an enhanced crystal quality and an increased p-doping. Time resolved electroluminescence measurements proof that band/band recombination is the dominant emission mechanism for the InGaN/GaN LEDs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Mayer, M., Pelzmann, A., Kamp, M., Ebeling, K.J., Teisseyre, H., Nowak, G., Leszczynski, M., Grzegory, I., Bockowski, M., Krukowski, S., Porowski, S., Karczewski, G., Jpn. J. Appl. Phys. Part 2, Vol. 36, L1634–L1636 (1997).Google Scholar
[2] Baranowski, J., Porowski, S., Proc. 23rd Int. Conf. on the Physics of Semiconductors, Berlin 1996, edited by Scheffler, M. and Zimmermann, R. (World Scientific, Singapore 1996) vol. 3, (1996).Google Scholar
[3] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemto, H., Sano, M., Chocho, K., Appl. Phys. Lett. 73, 832 (1998).Google Scholar
[4] Karpinski, J., Jun, J. and Porowski, S.: J. Crystal Growth 66, 110 (1984).Google Scholar
[5] Detchprohm, T., Amano, H., Hiramatsu, K. and Akasaki, I.: J. Crystal Growth 128, 384390 (1993).Google Scholar
[6] Sakai, S., Kurai, S., Nishino, K., Wada, K., Sato, H. and Naoi, Y.: Mat. Res. Soc. Symp. Proc. 449, 1522 (1997).Google Scholar
[7] Hellman, E., MRS Internet J. Nitride Semicond. Res. 3, 11 (1998).Google Scholar
[8] Leszczynski, M., Teisseyre, H., Suski, T., Grzegory, I., Bockowski, M., Jun, J., Porowski, S., Pakula, K., Baranowski, J.M., Foxon, C.T., Cheng, T.S., Appi. Phys. Lett. 69 (1), 7375 (1996).Google Scholar
[9] Zywietz, T., Neugebauer, J., Scheffler, M., Northrup, J., Walle, Chris G. Van de, MRS Internet J. Nitride Semicond. Res. 3, 26(1998).Google Scholar
[10] Leszczynski, M., Meyer, B.K., unpublished.Google Scholar
[11] Schauler, M., Eberhard, F., Kirchner, C., Schwegler, V., Pelzmann, A., Kamp, M. Ebeling, K.J., Bertram, F., Riemann, T., Christen, J., Leszczynski, M., Grzegory, I., Suski, T., Porowski, S., accepted for Appl. Phys. Lett.Google Scholar
[12] Makarov, Yu., Karpov, Yu., private communication.Google Scholar
[13] Nakamura, S., Mukai, T. and Senoh, M.: Jpn. J. Appl. Phys. 30 No. 12A, L1998–L2001 (1991).Google Scholar
[14] Kaufmann, U., Kunzer, M., Maier, M., Obloh, H., Ramakrishnan, A., Santic, B., Schlotter, P., Appl. Phys. Lett. 72 (11), 13261328 (1998).Google Scholar
[15] Haffouz, S., Beaumont, B., Leroux, M., Laugt, M., Lorenzini, P., Gibart, P., Hubert-Pfalzgraf, L.G., MRS Internet J. Nitride Semicond. Res. 2, 37 (1997).Google Scholar
[16] Calle, F., Monroy, E., Sánchez, F.J., Muñioz, E., Beaumont, B., Haffouz, S., Leroux, M., Gibart, P., MRS Internet J. Nitride Semicond. Res. 3, 24 (1998).Google Scholar
[17] Schwegler, V., Kirchner, C., Kamp, M. Ebeling, K.J., Leszczynski, M., Grzegory, I., Porowski, S., submitted to Appl. Phys. Lett.Google Scholar
[18] Choa, F.S., Fan, J.Y., Liu, P.L., Sipior, J., Rao, G., Carter, G.M., Chen, Y.J., Appl. Phys. Lett. 69 (24), 36683670 (1996).Google Scholar