Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:56:46.617Z Has data issue: false hasContentIssue false

Formation of controlled alumina films using Supercritical Fluids Chemical Deposition for electronic and telecommunication devices

Published online by Cambridge University Press:  15 March 2011

C. Aymonier
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux / Centre National de la Recherche Scientifique, Université Bordeaux 1, 87 Avenue du Dr Albert Schweitzer, 33608 Pessac Cedex, FRANCE Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux, 16 avenue Pey Berland, 33607 Pessac Cedex, FRANCE
M. Lamirand-Majimel
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux / Centre National de la Recherche Scientifique, Université Bordeaux 1, 87 Avenue du Dr Albert Schweitzer, 33608 Pessac Cedex, FRANCE Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux, 16 avenue Pey Berland, 33607 Pessac Cedex, FRANCE
C. Bousquet
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux / Centre National de la Recherche Scientifique, Université Bordeaux 1, 87 Avenue du Dr Albert Schweitzer, 33608 Pessac Cedex, FRANCE
C. Moncade
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux / Centre National de la Recherche Scientifique, Université Bordeaux 1, 87 Avenue du Dr Albert Schweitzer, 33608 Pessac Cedex, FRANCE
F. Cansell
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux / Centre National de la Recherche Scientifique, Université Bordeaux 1, 87 Avenue du Dr Albert Schweitzer, 33608 Pessac Cedex, FRANCE Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux, 16 avenue Pey Berland, 33607 Pessac Cedex, FRANCE
M. Maglione
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux / Centre National de la Recherche Scientifique, Université Bordeaux 1, 87 Avenue du Dr Albert Schweitzer, 33608 Pessac Cedex, FRANCE
C. Ellisalde
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux / Centre National de la Recherche Scientifique, Université Bordeaux 1, 87 Avenue du Dr Albert Schweitzer, 33608 Pessac Cedex, FRANCE
J.-M. Heintz
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux / Centre National de la Recherche Scientifique, Université Bordeaux 1, 87 Avenue du Dr Albert Schweitzer, 33608 Pessac Cedex, FRANCE Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux, 16 avenue Pey Berland, 33607 Pessac Cedex, FRANCE
J.-F. Silvain
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux / Centre National de la Recherche Scientifique, Université Bordeaux 1, 87 Avenue du Dr Albert Schweitzer, 33608 Pessac Cedex, FRANCE
Get access

Abstract

Alumina is one of the most widely used oxide ceramic material. It exists in many metastable forms, among which is the thermodynamically stable α phase, obtained upon severe thermal treatment. Sintering of alumina is generally performed in several stages: first, phase transitions towards the stable α phase followed by its densification. The first step is strongly dependent on the crystallinity of initial powders. By controlling this parameter, it is possible to optimize the sintering properties, in particular by decreasing the phase transition temperature. This effect has been studied for alumina elaborated in sub- and supercritical fluid media. This work highlights the possibilities to obtain, according to the nature of the fluid, different kinds of transition alumina: boehmite AlO(OH) or amorphous Al2O3. The sintering processes of these powders all lead to α-alumina, however, different microstructures and densities can be obtained. A significant shift towards lower λ/α phase transition temperature is also observed when amorphous alumina is considered, compared to boehmite. The transfer of this know-how to the design of core-shell nanoparticles and film deposition onto copper heat sinks is investigated to develop nanostructured ceramics for telecommunications and electronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Levin, D. Brandon, J. Am. Ceram. Soc., 81, 19952012, 1998.Google Scholar
[2] Hidalgo, H., Dépôt chimique en phase vapeur de couches minces d'alumine dans une post-décharge micro-onde, PhD manuscript, 2003.Google Scholar
[3] Guevara-Lara, A., Bacaud, R., Vrinat, M., Appl. Cat. A: General, 328, 99108, 2007.Google Scholar
[4] Hakuta, Y., Hayashi, H., Arai, K., Curr. Opin. Solid State Mater. Sci., 7, 341, 2003.Google Scholar
[5] Cabanas, A., Darrr, J., Lester, E., Poliakoff, M., Chem. Commun., 901, 2000.Google Scholar
[6] Hakuta, Y., Ura, H., Hayashi, H., Arai, K., Mater. Chem. Phys., 93, 466472, 2005.Google Scholar
[7] Mousavand, T., Ohara, S., Umetsu, M., Zhang, J., Takami, S., Naka, T., Adshiri, T., J. Supercrit. Fluids, 40, 397401 2007.Google Scholar
[8] Panasyuk, G.P., Danchevskaya, M.N., Belan, V.N., Voroshilov, I.L., Ivakin, D.Y., J. Phys. Cond. Matter, 16, S1187–S1196, 2004.Google Scholar
[9] Legros, C., Herbst, F., Lartigue-Korinek, S., Carry, C., Bowen, P., La revue de métallurgie, 10731080, 2002.Google Scholar
[10] Bousquet, C., Elissalde, C., Aymonier, C., Maglione, M., Cansell, F., Heintz, J.M., J. Eur. Ceram. Soc., 28, 223228, 2008.Google Scholar
[11] Reveron, H., Aymonier, C., Loppinet-Serani, A., Elissalde, C., Maglione, M., Cansell, F., Nanotech., 16, 11371143, 2005.Google Scholar
[12] Reveron, H., Elissalde, C., Aymonier, C., Maglione, M., Cansell, F., J Nanosci. Nanotech., 5(10), 17411744, 2005.Google Scholar
[13] Reverón, H., Elissalde, C., Aymonier, C., Bou squet, C., Maglione, M., Cansell, F., Nanotech., 17, 35273532, 2006.Google Scholar