Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T05:20:03.493Z Has data issue: false hasContentIssue false

Fluctuating Defect Density Probed with Noise Spectroscopy in Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  15 February 2011

P.A.W.E. Verleg
Affiliation:
Debye Institute, Department of Condensed Matter, University of Utrecht, P.O. Box 80000, 3508 TA Utrecht, The Netherlands, [email protected]
O. Uca
Affiliation:
Debye Institute, Department of Condensed Matter, University of Utrecht, P.O. Box 80000, 3508 TA Utrecht, The Netherlands, [email protected]
J. I. Dijkhuis
Affiliation:
Debye Institute, Department of Condensed Matter, University of Utrecht, P.O. Box 80000, 3508 TA Utrecht, The Netherlands, [email protected]
Get access

Abstract

Resistance fluctuations have been studied in hydrogenated amorphous silicon in the temperature range between 300 K and 450 K. The primary noise source has a power spectrum of approximately 1/f and is ascribed to hydrogen motion. Hopping of weakly bound hydrogen is thermally activated at such low temperatures with an average activation energy of 0.85 eV. The attempt rate amounts to 7 · 1012 s−1.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chittick, R., Alexander, J., and Sterling, H., J. Electrochemical Soc. 116, 77 (1969).Google Scholar
2. Carlson, D. and Magee, C., Appl. Phys. Lett. 33, 81 (1978).Google Scholar
3. Zellama, K., Germain, P., Squelard, S., Bourdon, B., Fontenille, J., and Danielou, R., Phys. Rev. B 23, 6648 (1981).Google Scholar
4. Street, R., Tsai, C., Kakalios, J., and Jackson, W., Phil. Mag. B 56, 305 (1987).Google Scholar
5. Santos, P., Johnson, N., and Street, R., Phys. Rev. Lett. 67, 2686 (1991).Google Scholar
6. Branz, H., Asher, S., and Nelson, B., Phys. Rev. B 47, 7061 (1993).Google Scholar
7. Shinar, R., Shinar, J., Jia, H., and Wu, X., Phys. Rev. B 47, 9361 (1993).Google Scholar
8. Greim, O., Weber, J., Baer, Y., and Kroll, U., Phys. Rev. B 50, 10644 (1994).Google Scholar
9. Scofield, J. and Webb, W., Phys. Rev. Lett. 54, 353 (1985).Google Scholar
10. Alers, G., Weissman, M., Averback, R., and Shyu, H., Phys. Rev. B 40, 900 (1989).Google Scholar
11. Zimmerman, N. and Webb, W., Phys. Rev. Lett. 61, 889 (1988).Google Scholar
12. Zimmerman, N. and Webb, W., Phys. Rev. Lett. 65, 1040 (1990).Google Scholar
13. Parman, C., Israeloff, N., and Kakalios, J., Phys. Rev. B 44, 8391 (1991).Google Scholar
14. Parman, C., Israeloff, N., and Kakalios, J., Phys. Rev. Lett. 69, 1097 (1992).Google Scholar
15. Fan, J. and Kakalios, J., Phil. Mag. B 69, 595 (1994).Google Scholar
16. Hooge, F., Phys. Lett. A 29, 139 (1969).Google Scholar
17. Street, R., Hack, M., and Jackson, W., Phys. Rev. B 37, 4209 (1988).Google Scholar
18. Jackson, W. and Tsai, C., Phys. Rev. B 45, 6564 (1992).Google Scholar
19. Powell, M. and Deane, S., Phys. Rev. B 53, 10121 (1996).Google Scholar
20. Smith, Z., Aljishi, S., Slobodin, D., Chu, V., Wagner, S., Lenahan, P., Arya, R., and Bennett, M., Phys. Rev. Lett. 57, 2450 (1986).Google Scholar
21. McMahon, T. and Tsu, R., Appl. Phys. Lett. 51, 412 (1987).Google Scholar
22. Zhang, S. and Jackson, W., Phys. Rev. B 43, 12142 (1991).Google Scholar
23. Chang, K. and Chadi, D., Phys. Rev. B 40, 11644 (1989).Google Scholar