Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:59:18.085Z Has data issue: false hasContentIssue false

Field-Emitter-Array Cold Cathode Arc-Protection Methods - A Theoretical Study

Published online by Cambridge University Press:  14 March 2011

L. Parameswaran
Affiliation:
MIT Lincoln Laboratory, Lexington MA 02420-9108
R.A. Murphy
Affiliation:
MIT Lincoln Laboratory, Lexington MA 02420-9108
Get access

Abstract

Field-emitter arrays (FEAs) are desirable for use as electron emitters in microwave-tube amplifiers because they can provide such advantages as higher efficiency and faster turn-on compared to their thermionic counterparts. Calculations have shown that Spindt-type metal and semiconductor emitters operate well below intrinsic current limits due to thermal effects, even for high-current applications such as klystrodes, twystrodes, and traveling-wave amplifiers. Nevertheless, the primary barrier to FEA utilization in such applications is premature failure due to arcing. These failures appear to be produced by ionization of gas molecules and/or desorbed contaminants, which are exacerbated by a poor vacuum environment. Lifetime and stability issues have been largely resolved for less stringent applications, such as flat-panel displays, through the use of integrated passive resistors that provide current limiting. However, such an approach is not directly compatible with operation at high frequency and current density. Other more complex approaches, such as the incorporation of active control in the form of integrated transistors, have also been demonstrated, but again, only for FEAs used in displays. This paper will review some of these schemes in the context of their efficacy in improving lifetime and stability of FEA cold cathodes in high-frequency applications. A theoretical analysis will be given of the effect on highfrequency performance of incorporating arc protection structures into Spindt-type metal FEAs. Specifically, two approaches will be considered: passive protection schemes such as the use of a modified thin film resistive layer, and active schemes such as FETs and saturated current limiters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See papers in Flat-Panel Display Materials 1998. Symposium. Mat. Res. Soc. 1998.Google Scholar
2. Marrese, C., Gallimore, A.D., Polk, J.E., Goodfellow, K.D., Jensen, K.L., AIAA 98-3484.Google Scholar
3. Feinerman, A.D. et al. , Proc. SPIE vol.2194, 262–73 (1994).Google Scholar
4. Busta, H.H., Pogemiller, J.E., Zimmerman, B.J., J. Micromech. Microeng. 3(2), 4956 (1993).Google Scholar
5. Spindt, C.A., Brodie, I., Humphrey, L. and Westerberg, E.R., J. Appl. Phys. 47(12), 5248 (1976).Google Scholar
6. Bandy, S.G. et al. , presented at IEEE Int. Conf. on Plasma Science, San Diego CA, (1997).Google Scholar
7. Murphy, R.A. et al. , presented at IEEE Int. Conf. on Plasma Science, San Diego CA (1997).Google Scholar
8. Temple, D. et al. , J. Vac. Sci. Tech. B 16(3), 19801990 (1998).Google Scholar
9. Kropfeld, P. et al. , Proc. IVMC'98, 8889 (1998).Google Scholar
10. Charbonnier, F., J. Vac. Sci. Tech. B 16(2), 880887 (1998).Google Scholar
11. Ancona, M., J. Vac. Sci. Tech. B 13(6), 22062214 (1995).Google Scholar
12. Ancona, M., J. Vac. Sci. Tech. B 14(3), 19181923 (1996).Google Scholar
13. Binh, V.T., Garcia, N., Purcell, S.T., Adv. in Imaging and Electron Physics 95, 63153 (1996).Google Scholar
14. Purcell, S.T., Binh, V.T., J. Vac. Sci. Tech. B 15(5), 16661677 (1997).Google Scholar
15. Brodie, I., Int. J. Electronics 38(4), 541550, 1975.Google Scholar
16. Schwoebel, P.R., Spindt, C.A., J. Vac. Sci. Tech. B 12(4), 2414–21 (1994).Google Scholar
17. Mackie, W.A., Xie, Tianbao, Davis, P.R., J. Vac. Sci. Tech. B 17(2), 613619 (1999).Google Scholar
18. Kozawa, T., Ohwaki, T., Taga, Y., Sawaki, N., Appl. Phys. Lett. 75(21), 3330–2 (1999).Google Scholar
19. Sugino, T., Kawasaki, S., Tanioka, K., Shirafuji, J., J. Vac. Sci. Tech. B 16(3), 1211–14 (1998).Google Scholar
20. Py, C., Baptist, R., IVMC'93, 2324 (1993).Google Scholar
21. Parameswaran, L. et al. , J. Vac. Sci. Tech. B 17(2) (1999).Google Scholar
22. Gray, H.F., Shaw, J.L., Proc. IVMC'97, Kyongju Korea, 220225 (1997).Google Scholar
23. Gray, H., U.S Patent 5359256 (1994).Google Scholar
24. Ting, A. et al. , Proc. IVMC'91, 200201 (1991).Google Scholar
25. Itoh, J., Hirano, T., Kanemaru, S., Appl. Phys. Lett. 69, 15781579 (1996).Google Scholar
26. Kanemaru, S., Hirano, T., Honda, K., Itoh, J., Appl. Surf. Sci. 146, 198202 (1999).Google Scholar
27. Yokoo, K., Arai, M., Mori, M., Jongsuck, B., Ono, S., J. Vac. Sci. Tech. B 13(2), 491–3 (1995).Google Scholar
28. Koga, K., Kanemaru, S., Matsukawa, T., Itoh, J., J. Vac. Sci. Tech. B 17(2), 588591 (1999).Google Scholar
29. Rathman, D.D. et al. , Proc. IEEE MTT-S Digest, 577580 (1999).Google Scholar
30. Choi, J.O. et al. , Appl. Phys. Lett. 74(20), 3050–2 (1999).Google Scholar
31. Perugupalli, P. et al. , IEEE Trans. Electr. Dev. 45(7), 1468 (1998).Google Scholar
32. Matsumoto, S. et al. , IEEE Trans. Electr. Dev. 43(5), 746 (1996).Google Scholar
33. Neubrand, H. et al. , Proc. 6th Int. Symp. Power Semic. Dev., 123 (1994).Google Scholar
34. Takemura, H. et al. , Proc. IEDM'97, 709–12 (1997).Google Scholar
35. Makishima, H. et al. , Appl. Surf. Sci. 146(1-4), 230–3 (1999).Google Scholar