Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-20T09:18:04.663Z Has data issue: false hasContentIssue false

Facet-control in selective area growth (SAG) of a-plane GaN by MOVPE

Published online by Cambridge University Press:  31 January 2011

Bei Ma
Affiliation:
[email protected], Mie University, Tsu, Japan
Reina Miyagawa
Affiliation:
[email protected], Mie University, Tsu, Japan
Hideto Miyake
Affiliation:
[email protected], Mie University, Tsu, Japan
Kazumasa Hiramatsu
Affiliation:
[email protected], Mie Univerisity, Tsu, Japan
Get access

Abstract

Selective area growth (SAG) of a-plane GaN grown on r-plane sapphire with a stripe orientation along <1-100> was investigated. The key technology of facet-control is optimizing the growth temperature and the reactor pressure. Our experiments reveal that the growth temperature determined facet form: in samples grown at 1000 °C, the structure consists of {11-22}and (000-1); with increasing growth temperature to 1050 °C, the area of {11-22} facet gradually decreases, and two new planes, (0001) and {11-20} facets form; eventually, in samples grown at 1000 oC, the {11-22} facet completely disappears, (0001) and {11-20} facet continue to increase to form a rectangle cross-section. The reactor pressure determines the ratio of the lateral growth rate and the vertical growth rate: with reactor pressure decreasing from 500 torr to 100 torr, the rectangle structure gradually decreases the height and increases the width, and the volume nearly keeps constant.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Takeuchi, T., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 39, 413 (2000).Google Scholar
[2] Piprek, J., Farrell, R., DenBaars, S., and Nakamura, S., IEEE Photon. Technol. Lett. 18, 7 (2006).Google Scholar
[3] Craven, M. D., Lim, S. H., Wu, F., Speck, J. S., and DenBaars, S. P., Appl. Phys. Lett. 81, 469 (2002).Google Scholar
[4] Craven, M. D., Wu, F., Chakraborty, A., Imer, B., Mishra, U. K., DenBaars, S. P. and Speck, J. S., Appl. Phys. Lett. 84, 1281 (2004).10.1063/1.1650545Google Scholar
[5] Kato, Y., Kitamura, S., Hiramatsu, K. and Sawaki, N., 1994 J. Cryst. Growth 144, 133 (1994).Google Scholar
[6] Kitamura, S., Hiramatsu, K. and Sawaki, N., Jpn. J. Appl. Phys. 34, L1184 (1995).Google Scholar
[7] Nam, O. H., Bremer, M. D., Ward, B. L., Nemanich, R. J. and Davis, R. F., Jpn. J. Appl. Phys. 36, L532 (1997).Google Scholar
[8] Miyake, H., Motogaito, A., and Hiramatsu, K., Jpn. J. Appl. Phys. 38, L1000 (1999).Google Scholar
[9] Hiramatsu, K., Nishiyama, K., Onishi, M., Mizutani, H., Narukawa, M., Motogaito, A., Miyake, H., Iyechika, Y., and Maeda, T., J. Cryst. Growth 221, 316 (2000).Google Scholar
[10] Ni, X., Özgür, Ü., Fu, Y., Biyikli, N., Xie, J., Baski, A. A., Morkoç, H., and Liliental-Weber, Z., Appl. Phys. Lett. 89, 262105 (2006).Google Scholar
[11] Gühne, T., Bougrioua, Z., Vennéguès, P., Leroux, M., and Albrecht, M., J. Appl. Phys. 101, 113101 (2007).Google Scholar
[12] Imer, B., Wu, F., Speck, J.S. and DenBaars, S.P., J. Cryst. Growth 306, 330 (2007).Google Scholar
[13] Imer, B., Wu, F., Craven, M. D., Speck, J. S., DenBaars, S. P., Jpn. J. Appl. Phys., Vol.45, 8644 (2006).Google Scholar
[14] Netzel, C., Wernicke, T., Zeimer, U., Brunner, F., Weyers, M. and Kneissl, M., J. Crystal Growth 8, 310(2008).Google Scholar
[15] Ma, B., Hu, W., Miyake, H., and Hiramatsu, K., Appl. Phys. Lett. 95, 121910 (2009).Google Scholar
[16] Cruz, S. C., Keller, S., Mates, T. E., Mishra, U. K., DenBaars, S. P., J. Cryst. Growth 311, 3817 (2009).Google Scholar