Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T08:47:48.479Z Has data issue: false hasContentIssue false

Fabrication of Agglomerate-Free Nanopowders by Hydrothermal Chemical Processing

Published online by Cambridge University Press:  10 February 2011

H.K. Schmidt
Affiliation:
Institut fuer Neue Materialien gem. GmbH, Im Stadtwald, Bldg. 43 A, D-66 123 Saarbruecken, Germany, [email protected]
R. Nass
Affiliation:
Institut fuer Neue Materialien gem. GmbH, Im Stadtwald, Bldg. 43 A, D-66 123 Saarbruecken, Germany, [email protected]
D. Burgard
Affiliation:
Institut fuer Neue Materialien gem. GmbH, Im Stadtwald, Bldg. 43 A, D-66 123 Saarbruecken, Germany, [email protected]
R. Nonninger
Affiliation:
Institut fuer Neue Materialien gem. GmbH, Im Stadtwald, Bldg. 43 A, D-66 123 Saarbruecken, Germany, [email protected]
Get access

Abstract

A chemical processing technique for the fabrication of nanopowders has been developed. The route is based on precipitation processes in solutions, either within aqueous droplets in micro-emulsions in the presence of surface modifiers like surfactants or by direct precipitation in solutions in the presence of these surface modifiers or small organic molecules directly bonded to the particle surface. In order to obtain well crystallized or densified particles, a continuous flow hydrothermal process has been developed which allows the fabrication of agglomerate-free surface modified nanopowders. The surface modification provides a full redispersibility after drying and permits a water-based processing. Nanoparticles preparation for ZrO2, ITO and ATO by this route are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gleiter, H., Nanocrystalline Materials, Pergamon Press, Oxford, 1989.Google Scholar
2. Patent Gleiter, das beim 1NM gehalten wird.Google Scholar
3. Nitsche, R., Rodewald, M., Skandan, G., Fuess, H., Hahn, H., Nanostruct. Mater. 5, p. 535546 (1996).Google Scholar
4. Meisel, R. L., König, T., in: Werkstoffwoche 1996, Symp. 9 Neue Werkstoffkonzepte, edited by Schmidt, H. and Singer, R. F., (DGM Informationsgesellschaft mbH, Frankfurt/M., 1997).Google Scholar
5. Szepvolgyi, J., Mohai, I., Baksa, G., NATO ASI Ser. 3, 18, p. 543554 (1996).Google Scholar
6. Fusil, S., Armand, X., Herlin, N., Cauchetier, N., Key Eng. Mater., 132–136, Pt. Euro Ceramics V, p. 141144.Google Scholar
7. Moura, F. J., Munz, R. J., J. Amer. Ceram. Soc. 80 (9), p. 24252428 (1997).Google Scholar
8. Lei, F., Yousan, F., Lihong, C., 3rd Asia Pac. Conf. Plasma Sci. Technol. Vol. 2, edited by Kanzawa, A. (Japan Society for the Promotion of Science, Tokyo, 1996), p. 335339.Google Scholar
9. Moravec, P., Smolik, J., Levdansky, V. V., J. Mater. Sci. Lett 16 (8), p. 648652 (1997.Google Scholar
10. Borsella, E., Botti, S., Martelli, S., Alexandrecu, R., Cesile, M. C., Nesterenko, A., Giorgi, R., Turtu, S., Zappa, G., Silic. Ind. 62 (1-2), p. 310 (1997).Google Scholar
11. Malloggi, S., Casale, M., Curcio, F., Musci, M., Notaro, M., Eur. Pat. Appl., 7 pp. CODEN: EPXXDW, Patent (1997).Google Scholar
12. Herlin, N., Armand, X., Musset, E., Martinengo, H., Cauchetier, M., J. Eur. Ceram. Soc. 16 (10), p. 10631073 (1996).Google Scholar
13. Nucleation, edited by Zettlemoyer, A. C. (Marcel Dekker, New York, 1969).Google Scholar
14. James, P., in Advances of Ceramics, Vol. 4: Nucleation and Crystallization in Glasses, edited by Simmons, J. H., Uhlmann, D. R. and Beall, G. H. (The American Ceramic Society, Inc., Columbus/OH, 1982), p. 1.Google Scholar
15. Matievic, E., in Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J. D., Ulrich, D. R. (John Wiley & Sons, New York 1988), p. 429.Google Scholar
16. Brinker, C. J., and Scherer, G. W., Sol-Gel Science, Academic Press, London, 1990, and literature cited herein.Google Scholar
17. Dislich, H., Angew. Chem. 83, p. 428 (1971).Google Scholar
18. Schmidt, H., KONA Powder and Particle, No. 14, p. 92103 (1996).Google Scholar
19. Schmidt, H., J. Sol-Gel Science and Technology 8, p. 557565 (1997).Google Scholar
20. Schmidt, H., Proc. of 9th Intl. Workshop on Glasses, Ceramics, Hybrids and Nanocompo-sites from Gels, Aug. 31 - Sept. 5, 1997, Sheffield, U. K. (in print).Google Scholar
21. Burgard, D., Naß, R., Schmidt, H., German Offen. 195 15 820 Al.Google Scholar