Article contents
Evaluation Of Proton-Induced Deep Levels In n-Si
Published online by Cambridge University Press: 15 February 2011
Abstract
Deep level transient spectroscopy (DLTS) has been conducted to reveal electronic states of deep centers in n-Si, under 17 MeV-proton irradiation. The DLTS device was installed into the beam line of the cyclotron. The in-situ experiment was concentrated on, to study the dynamical defect evolution and the effect of irradiation temperature on the deep centers. DLTS signals of four deep levels E0-E3 were observed when n-Si was irradiated at 300 K. Three of the four peaks were identified as V-O, V-V2− and P-V centers, in comparison with the past data of electron irradiation. The other unknown level (EO) was located at 0.16 eV below the conduction band, and 0.02 eV lower than the V-O level. The E0 peak showed a characteristic behavior dependent on the irradiation temperature. The EQ did not emerge when irradiated at 200 K, but appeared after being annealed at 300 K following the 200 K irradiation. The evolution of these levels was consecutively investigated with accumulating the proton fluence and with annealing after the irradiation.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997
References
- 5
- Cited by