Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T13:10:17.275Z Has data issue: false hasContentIssue false

Evaluation of Corrosion Rate of Steel Rebars Embedded in Mortar Mixed with Triturated Tire Particles

Published online by Cambridge University Press:  13 November 2013

Claudia Berenice Flores Valdez
Affiliation:
Instituto de Metalurgia e Ingeniería de Materiales, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí (UASLP), México.
Francisco G. Pérez-Gutiérrez
Affiliation:
Centro de Investigación y Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí (UASLP), México.
Imelda Esparza Álvarez
Affiliation:
Instituto de Metalurgia e Ingeniería de Materiales, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí (UASLP), México.
Orlando Guarneros García
Affiliation:
Centro de Investigación y Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí (UASLP), México.
Sandra Luz Rodríguez Reyna
Affiliation:
Centro de Investigación y Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí (UASLP), México.
Get access

Abstract

Different materials, such as triturated waste tire (WT) particles, have been proposed as aggregate to improve mortar properties and reduce its cost in recent years. Using WT as aggregate implies material recycling, providing an environmental benefit. Previous studies show controversy on the chloride ion diffusion coefficient in mortar test specimens as a function of the WT content. The objective of this investigation is to evaluate the corrosion rate of steel reinforcement embedded in mortar specimens using WT as aggregate when exposed to chlorides. Electrochemical techniques, mercury intrusion porosimetry and scanning electron microscope were used to measure corrosion rate, porosity and microstructure of mortar matrix, respectively. Corrosion rate and porosimetry results were found to directly correlate for test pieces with 7.5% of WT compared with control samples and test pieces containing 5%, 10% of WT; such results are supported by visual inspection of steel reinforcements. Our results show that substituting 7.5% of sand with WT when preparing mortar provides the optimum protection.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Song, Y.-P., Song, L.-Y., and Zhao, G.-F., “Factors affecting corrosion and approaches for improving durability of ocean reinforced concrete structures,” Ocean Engineering, vol. 31, no. 5–6, pp. 779789, Apr. 2004.CrossRefGoogle Scholar
Lu, C., Jin, W., and Liu, R., “Reinforcement corrosion-induced cover cracking and its time prediction for reinforced concrete structures,” Corrosion Science, vol. 53, no. 4, pp. 13371347, Apr. 2011.CrossRefGoogle Scholar
Angst, U., Elsener, B., Larsen, C. K., and Vennesland, Ø., “Critical chloride content in reinforced concrete — A review,” Cement and Concrete Research, vol. 39, no. 12, pp. 11221138, Dec. 2009.CrossRefGoogle Scholar
Pelisser, F., Zavarise, N., Arent, T., and Michael, A., “Concrete made with recycled tire rubber: Effect of alkaline activation and silica fume addition,” Journal of Cleaner Production, vol. 19, no. 6–7, pp. 757763, 2011.CrossRefGoogle Scholar
Oikonomou, N. and Mavridou, S., “Cement & Concrete Composites Improvement of chloride ion penetration resistance in cement mortars modified with rubber from worn automobile tires,” Cement and Concrete Composites, vol. 31, no. 6, pp. 403407, 2009.CrossRefGoogle Scholar
Chiu, C.-T. and Lu, L.-C., “A laboratory study on stone matrix asphalt using ground tire rubber,” Construction and Building Materials, vol. 21, no. 5, pp. 10271033, May 2007.CrossRefGoogle Scholar
Bravo, M. and De Brito, J., “Concrete made with used tyre aggregate: durability-related performance,” Journal of Cleaner Production, vol. 25, pp. 4250, 2012.CrossRefGoogle Scholar
Gesoğlu, M. and Güneyisi, E., “Permeability properties of self-compacting rubberized concretes,” Construction and Building Materials, vol. 25, no. 8, pp. 33193326, Aug. 2011.CrossRefGoogle Scholar
Toutanji, H. A., “The use of rubber tire particles in concrete to replace mineral aggregates,” Cement & Concrete Composites, vol. 18, no. 95, pp. 135139, 1996.CrossRefGoogle Scholar
Ganjian, E., Khorami, M., and Akbar, A., “Scrap-tyre-rubber replacement for aggregate and filler in concrete,” Construction and Building Materials, vol. 23, no. 5, pp. 18281836, 2009.CrossRefGoogle Scholar
IMCYC, Proporcionamiento de mezclas. México: Instituto Mexicano del Cemento y del Concreto, A.C., 1993.Google Scholar
S, M.. and Geary, A., “lectrochemical Polarization, a theoretical analysis of the shape of polarization curves,” Journal of the Electrochemical Society, pp. 5663, 1957.Google Scholar
Andrade, C. and Alonso, C., “Corrosion rate monitoring and on-site,” vol. 10, no. 5, pp. 315328, 1996.CrossRefGoogle Scholar
Bravo, M., “Concrete with Incorporation of Aggregates from Grinded Used Rubber Tyres.,” Technical University of Lisbon, Lisbon, Portugal, 2009.Google Scholar
K., E. and Wainwright, P.., “Porosity and permeability of foamed concrete,” Cement and Concrete Research, vol. 31, no. 5, pp. 805812, May 2001.Google Scholar
, F. Pengpiing, Z. L., Dagen, S. and Shengnian, W., “Influence of binder composition and concrete pore structure on chloride diffusion coefficient in concrete,” Journal of Wuhan University of Technolgy, vol. Vol. 26, pp. 160164, 2011.CrossRefGoogle Scholar
Rodríguez, O., Frías, M., Sánchez de Rojas, M. I., García, R., and Vigil, R, “Efecto de la adición de lodos de papel activados térmicamente en las propiedades mecánicas y de porosidad de pastas de cemento,” Materiales de Construcción, vol. 59, no. 294, pp. 4152, Apr. 2009.Google Scholar
Rodriguez, Sandra., “Efectos de una estracción electroquimica de cloruros sobre el concreto armado.,” Universidad Autónoma de San Luis Potosí, 2005.Google Scholar
Neville, A., Properties of concrete, Person Edu. USA:, 1995.Google Scholar
Caré, S.;, “Effect of temperature on porosity and on chloride diffusion in cement pastes,” Construction and Building Materials, vol. 22, no. 7, pp. 15601573, Jul. 2008.CrossRefGoogle Scholar