Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T12:17:14.533Z Has data issue: false hasContentIssue false

Electronic Transport in Co-deposited Hydrogenated Amorphous/Nanocrystalline Thin Films

Published online by Cambridge University Press:  01 February 2011

Y. Adjallah
Affiliation:
Physics and astronomy, University of Minnesota, 116 Church Street S.E., University of Minnesota, minneapolis, MN, 55455
C. Blackwell
Affiliation:
[email protected], University of Minnesota, Physics and astronomy, 116 Church Street S.E., University of Minnesota, minneapolis, MN, 55455, United States
C. Anderson
Affiliation:
[email protected], University of Minnesota, Mechanical Engineering, 111 Church Street S.E., University of Minnesota, minneapolis, MN, 55455, United States
U. Kortshagen
Affiliation:
[email protected], University of Minnesota, Mechanical Engineering, 111 Church Street S.E., University of Minnesota, minneapolis, MN, 55455, United States
J. Kakalios
Affiliation:
[email protected], University of Minnesota, Physics and astronomy, 116 Church Street S.E., University of Minnesota, minneapolis, MN, 55455, United States, 612624-9856, 612-624-4578
Get access

Abstract

Mixed-phase hydrogenated amorphous silicon thin films containing nanocrystalline silicon inclusions have been synthesized in a dual chamber co-deposition system. A PECVD deposition system produces small crystalline silicon particles (3-5 nm diameter) in a flow-through reactor, and injects these particles into a separate capacitively-coupled plasma chamber in which hydrogenated amorphous silicon is deposited. Raman spectroscopy is used to determine the volume fraction of nanocrystals in the mixed phase thin films, while infra-red spectroscopy characterizes the hydrogen bonding structure as a function of nanocrystalline concentration. At a moderate concentration of 5 nm silicon crystallites, the dark conductivity and photoconductivity are consistently found to be higher than in mixed phase films with either lower or higher densities of nanocrystalline inclusions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, J. Lord, K. Guha, S. Ovshinski, S. R. Mater. Res. Soc. Proc. 609, A15.4.1 (2000).Google Scholar
2. Collins, R. W. Ferlauto, A. S. Ferreira, G. M. Joohyun, K. Mater. Res. Soc. Proc. 762, A. 10.1 (2001).Google Scholar
3. Ostraat, M. L. DeBlauwe, J. W. Green, M. L. Bell, L. D. Brongersma, M. L. Caasperson, J. Flagen, R.C. and Atwater, H. Appl. Phys. Lett., 79, 433 (2001).Google Scholar
4. Park, N.M. Kim, T. S. and Park, S.J. Appl. Phys. Lett. 78, 2575 (2001).Google Scholar
5. Cabarrocas, P. Rocai, Fortcubertai Morral, A. and Poissant, Y. Thin Solid Films, 403-404, 39 (2002).Google Scholar
6. Thompson, S. Perrey, C. R. Carter, C. B. Belich, T. J. Kakalios, J. Kortshagen, U. J. Appl. Phys. 97, 34, 310 (2005).Google Scholar
7. Anderson, C. Blackwell, C. Deneen, J. Carter, C. Barry, Kakalios, J. and Kortshagen, U. Mater. Res. Soc. Proc. 910, 79 (2006).Google Scholar
8. Mangolini, L. Thimsen, E. Kortshagen, U. Nano Lett. 5, 655 (2005).Google Scholar
9. Walck, S.D. and Mcaffey, J.P. Mater. Res. Soc. Proc., 480, 149 (1997).Google Scholar
10. Williams, D. B. and Carter, C. B. Transmission Electron Microscopy (Plenum, New York, 1996).Google Scholar
11. Lucovsky, G. Nemanich, R. J. and Knights, J. C. Phys. Rev. B 19, 2064 (1979).Google Scholar
12. Viera, G. Huet, S. and Boufendi, L. J. Appl. Phys. 90, 4175 (2001); C. Min Z. Weijia W. Tianmin J. Fei L. Guohua and D. Kun Vacuum 81, 126 (2006).Google Scholar
13. Saleh, R. and Nickel, N.H., Thin Solid Films 427, 266 (2003).Google Scholar
14. Bhattacharya, E. and Mahan, A. H. Appl. Phys. Lett. 52, 1587 (1988).Google Scholar
15. Quicker, D. and Kakalios, J. Phys. Rev. B 60, 2449 (1999).Google Scholar
16. Marra, D. C. Edelberg, E. A. Naone, R. L. and Aydil, E. S. J. Vac. Sci. Tech. A 16, 3199 (1998).Google Scholar
17. Staebler, D. L. and Wronski, C.R., Appl. Phys. Lett. 31, 292 (1976); J. Appl. Phys. 51, 3262 (1980).Google Scholar