Published online by Cambridge University Press: 01 February 2011
Lynntech, Inc has successfully researched and demonstrated a unique method for the manufacture of quasicrystalline (QC) coatings that utilizes the process of electrocodeposition. The purpose of this study was to optimize the physical-mechanical properties of the QC coatings. All metal substrates were aluminum alloy Al-3004 and codeposition was performed using Al65Cu23Fe12 QC powders in nickel plating solutions. X-ray diffraction spectroscopy was performed in order to verify the attachment of quasicrystals to the aluminum alloy substrate and coated samples displayed identical spectra to those of raw QC powders. The average contact angle θ was 117.2° for electrocodeposited QC coatings. Friction was monitored during pin-on-disk wear tests and QC coated samples had coefficients of friction as low as 0.01 and an average value of 0.05 with samples showing no visible wear scar. Lynntech's electrocodeposited quasicrystalline coatings withstand high temperatures and exhibit low wear and friction characteristics with a low surface energy making them ideal for cookware, as well as various other applications such as bearings, landing gear and engine parts, where thermal and mechanical conditions are prime importance.