Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:07:07.487Z Has data issue: false hasContentIssue false

Electrically Air-stable ZnO Thin Film Produced by Reactive RF Magnetron Sputtering for Thin Film Transistors Applications

Published online by Cambridge University Press:  31 January 2011

Divine Ngwashi
Affiliation:
[email protected]@yahoo.co.uk
Richard B. M. Cross
Affiliation:
[email protected], De Montfort University, Emerging Technologies Research Centre, The Gateway, Leicester, LE1 9BH, United Kingdom
Shashi Paul
Affiliation:
[email protected], De Montfort University, Emerging Technologies Research Centre, Hawthorn Building, The Gateway, Leicester, LE1 9BH, United Kingdom
Get access

Abstract

The influence of native point defects on the electrical and optical stability of zinc oxide (ZnO) layers in air produced by reactive RF magnetron sputtering is investigated. ZnO thin films are strongly affected by oxygen (O2) molecules in ambient atmosphere. For instance, surface defects such as oxygen vacancies act as adsorption sites of O2 molecules, and the chemisorption of O2 molecules depletes the surface electronic states and reduces channel conductivity. Thin films of ZnO produced have electrical resistivities between 8.6 × 103 and 8.3 × 108 Ω-cm, and were found to be electrically-stable in air. TFTs fabricated using these films exhibited effective mobilities of ∼3 cm2V-1s-1 and the threshold voltage shifts by < 5 V under gate bias stress of 1 MV/cm for up to 104 s.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Mingjiao, L. and Koo, K. Hong, Applied Physics Letters 84, 173–5 (2004).Google Scholar
[2] Il, P. Won, Suk, K. Jin, Gyu-Chul, Y., Bae, M. H., and Lee, H. J., Applied Physics Letters 85, 5052–4 (2004).Google Scholar
[3] Woong-Ki, H., Gunho, J., Soon-Shin, K., Sunghoon, S., and Takhee, L., IEEE Transactions on Electron Devices 55, 3020–9 (2008).Google Scholar
[4] Khranovskyy, V., Eriksson, J., Lloyd-Spetz, A., Yakimova, R., and Hultman, L., Thin Solid Films 517, 2073–8 (2009).10.1016/j.tsf.2008.10.037Google Scholar
[5] Park, J. Y., Kim, J.-J., Kim, S.S., Journal of Nanoscience and Nanotechnology 8 (2008).Google Scholar
[6] Donghun, K., Hyuck, L., Changjung, K., Ihun, S., Park, J., Youngsoo, P., and JaeGwan, C., Applied Physics Letters 90, 192101–1 (2007).Google Scholar
[7] Martins, R., Barquinha, P., Pimentel, A., Pereira, L., and Fortunato, E., Physica Status Solidi A 202, 95–7 (2005).10.1002/pssa.200521020Google Scholar
[8] Hoffman, R. L., Norris, B. J., and Wager, J. F., Applied Physics Letters 82, 733–5 (2003).10.1063/1.1542677Google Scholar
[9] Cross, R. B. M., Souza, M. M. De, Deane, S. C., and Young, N. D., IEEE Transactions on Electron Devices 55, 1109–15 (2008).10.1109/TED.2008.918662Google Scholar
[10] Hoshino, K., Hong, D., Chiang, H. Q., and Wager, J. F., IEEE Transactions on Electron Devices 56, 1365–70 (2009).10.1109/TED.2009.2021339Google Scholar
[11] Powell, M. J., IEEE Transactions on Electron Devices 36, 27532763 (1989).10.1109/16.40933Google Scholar
[12] Schroder, D. K., Semiconductor Material and Device Characterization, Second ed. 1998: John Wiley & Sons 143159.Google Scholar
[13] Yu, Y. S., Kim, B. I., Kim, S. C., Shin, B. C., Kim, T. S., and Jung, M. Y., Physica B 376-377, 752–5 (2006).Google Scholar
[14] Natsume, Y. and Sakata, H., Materials Chemistry and Physics 78, 170–6 (2003).10.1016/S0254-0584(02)00314-0Google Scholar
[15] Natsume, Y. and Sakata, H., Thin Solid Films 372, 30–6 (2000).10.1016/S0040-6090(00)01056-7Google Scholar
[16] Pawar, B. N., Jadkar, S. R., and Takwale, M. G., Journal of the Physics and Chemistry of Solids 66, 1779–82 (2005).10.1016/j.jpcs.2005.08.086Google Scholar
[17] Raoufi, D. and Raoufi, T., Applied Surface Science 255, 5812–17 (2009).10.1016/j.apsusc.2009.01.010Google Scholar
[18] Tauc, R. G. J., Vancu, A., Physica Status Solidi A 15 627 (1966).10.1002/pssb.19660150224Google Scholar
[19] Neil, D. N. Ashcroft, W.; and Mermin, , Solid State Physics (Saunders College Publishing 1976).Google Scholar