Published online by Cambridge University Press: 01 February 2011
The electrical and thermal properties of carbon nanotubes (CNT)-polymer nanocomposite materials have been studied. The carbon nanostructures were analyzed by several analytical techniques, including Electronic Microscopy, Raman Spectroscopy, and X-Ray Photoelectron Spectroscopy. Carbon nanotubes were grown by catalytic chemical vapor deposition on metal/metal oxide catalytic systems using acetylene or other hydrocarbons. Raman Spectroscopy was used to analyze the CNT and CNT-polymer nanocomposite materials. The thermal and electrical properties of these CNT-polymer nanocomposite materials depend on the amount of CNTs in the polymer and also on the uniformity of the CNTs dispersed in the polymer. A reduction in electrical resistivity was observed, as the nanotubes' concentration in the polymeric films increased, while optical transparency remained 85 % or higher relative to acrylic films without nanotubes.