Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T09:09:29.818Z Has data issue: false hasContentIssue false

Effect of Process Conditions and Chemical Composition on the Microstructure and Properties of Chemically Vapor Deposited SiC, Si, ZnSe, ZnS and ZnSxSe1-x

Published online by Cambridge University Press:  15 February 2011

Michael A. Pickering
Affiliation:
Morton International, 185 New Boston Street, Woburn, MA 01801
Raymond L. Taylor
Affiliation:
Morton International, 185 New Boston Street, Woburn, MA 01801
Jitendra S. Goela
Affiliation:
Morton International, 185 New Boston Street, Woburn, MA 01801
Hemant D. Desai
Affiliation:
Morton International, 185 New Boston Street, Woburn, MA 01801
Get access

Abstract

Sub-atmospheric pressure chemical vapor deposition (CVD) processes have been developed to produce theoretically dense, highly pure, void-free and large area bulk materials, SiC, Si, ZnSe, ZnS and ZnSxSe1-x. These materials are used for optical elements, such as mirrors, lenses and windows, over a wide spectral range from the vacuum ultraviolet (VUV) to the infrared (IR).

In this paper we discuss the effect of CVD process conditions on the microstructure and properties of these materials, with emphasis on optical performance. In addition, we discuss the effect of chemical composition on the properties of the composite material ZnSxSe1-x.

We first present a general overview of the bulk CVD process and the relationship between process conditions, such as temperature, pressure, reactant gas concentration and growth rate, and the microstructure, morphology and properties of CVD-grown materials. Then we discuss specific results for CVDgrown SiC, Si, ZnSe, ZnS and ZnSxSe1-x.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bryant, W.A., J. Mater. Sci. 12 (1977), 1285.Google Scholar
2. Tsao, J.Y. and Ehrlich, D.J., Appl. Phys. Lett. 45 (1984), 617.CrossRefGoogle Scholar
3. Deutsch, T.F. and Rathman, D.D., Appl. Phys. Lett. 45 (1984), 623.Google Scholar
4. Baum, T.H. and Jones, C.R., Appl. Phys. Lett. 47 (1985), 538.CrossRefGoogle Scholar
5. Houle, F.A., Jones, C.R., Baum, T., Pico, C. and Kovac, C.A., Appl. Phys. Lett. 46 (1985), 538.CrossRefGoogle Scholar
6. Lachey, W.J., Stintor, D.P., Cerny, G.A., Schaffhauser, A.C. and Fehrenbacher, L.L., Adv. Ceram. Mater. 2 (1987), 24.Google Scholar
7. Stinton, D.P., Lackey, W.J., Lauf, R.J. and Besmann, T.M., Ceram. Eng. Sci. Proc. 5 (1984), 668.Google Scholar
8. Saraie, J., Kwon, J. and Yodogawa, Y., J. Electrochem. Soc.: Solid-State Sci. Tech. 132 (1985), 890.Google Scholar
9. Cochran, A.A., Stephenson, J.B. and Donaldson, J.G., J. Metals 22 (1970), 37.Google Scholar
10. Nichara, K., Ceram. Bull. 63 (1984), 1160.Google Scholar
11. Hakim, M.J., in “Proceedings of the 5th International Conference on CVD,” edited by Blocher, J.M. Jr., Hinterman, H.E. and Hall, L. (The Electrochemical Society, Princeton, NJ, 1975).Google Scholar
12. Bloem, J. and Giling, L.J., in “Current Topics in Material Science,” Vol.1, edited by Kaldis, E. (North Holland, Amsterdam, 1978), p. 147.Google Scholar
13. Cullen, G.W. and Corboy, J.F., J. Crystallogr. Growth 70 (1984), 230.CrossRefGoogle Scholar
14. Srinivasan, G.R., J. Crystallogr. Growth 70 201.Google Scholar
15. Ludowise, M.J., J. Appl. Phys. 58 (1985), R31.CrossRefGoogle Scholar
16. Donnelly, V.M., Brasen, D., Appelbaum, A. and Geva, M., J. Appl. Phys. 58 (1985), 2022.Google Scholar
17. Balog, M. and Schieber, M., Thin Solid Films 47 (1977), 109.CrossRefGoogle Scholar
18. Schlichting, J., Powder Metall. Int. 12 (1980), 14.Google Scholar
19. Matsuda, T., Uno, N., Nakae, H. and Hirai, T., J. Mater. Sci. 21 (1986), 649.Google Scholar
20. Archer, N.J., in “High Temperatuare Chemistry of Inorganic and Ceramic Materials,” edited by Glassu, F.P. and Potter, P.E., Special Publ. No. 30 (Chemical Society, London, 1976), p. 167.Google Scholar
21. Arizumi, T., in “Current Topics in Material Science,” Vol.1, edited by Kaldis, E. (North Holland, Amsterdam, 1978), p. 343.Google Scholar
22. Goela, J.S. and Taylor, R.L., SPIE Proc. 659 (1986), 161.Google Scholar
23. Kruse, P.W., Semiconductors and Semimetals 18 (1981), 1.Google Scholar
24. Debolt, H.E., in “Hardbook of Composites,” edited by Lubin, G. (Van Nostrand Rheinhold, NY, 1982), p. 171.Google Scholar
25. Pickering, M.A., Taylor, R.L. and Moore, D.T., Applied Optics 25(19) (1986), 3364.CrossRefGoogle Scholar
26. Donadio, R., Swanson, A. and Pappis, J., in “Proceedings of the 4th Conference on Infrared Laser Window Materials,” edited by Andrews, C.R. and C.L. Strecher (Air Force Materials Laboratoary, Wright-Patterson AFB, OH, 1975), p. 494.Google Scholar
27. Yim, Y.M. and Stofko, E.J., J. Electrochem. Soc. 119 (1972), 381.Google Scholar
28. Klein, C.A., diBenedetto, B. and Pappis, J., Opt. Eng. 25(4) (1986), 519.Google Scholar
29. Goela, J.S., Taylor, R.L., Lefebvre, M.J., Price, P.E. Jr. and Smith, M.J., in “Laser Induced Damage in Optical Material: 1983,” NBS Special Publ. 688, edited by Bennett, H.E., Guenther, A.H., Milarn, D., Newman, B.E. (National Bureau of Standards, Boulder, CO, 1983), p. 106.Google Scholar
30. Pickering, M.A. and Taylor, R.L., SPIE Proc. 576 (1985), 16.Google Scholar
31. Pickering, M.A., Taylor, R.L. and Armirotto, A.L., SPIE Proc. 618 (1986), 110.Google Scholar
32. Goela, J.S. and Taylor, R.L., in “Proceedings of the ASME/JSME Thermal Engineering Joint Conference,” Honolulu, March 1987, edited by Marto, P.J. and I. Tanasawa (American Society of Mechanical Engineers, NY, 1987), p. 623.Google Scholar
33. Tanzilli, R.A. and Gebhardt, J.J., SPIE Proc. 297 (1981), 59.CrossRefGoogle Scholar
34. Engdahl, R.E., SPIE Proc. 315 (1981), 123.Google Scholar
35. Pickering, M.A. and Taylor, R.L., in “Proceedings of the Topical Meeting on High Power Laser Optical Components,” 24–25 Oct. 1988, NWC TP-7017 Part 1, Unclassified Papers (Naval Weapons Center, China Lake, CA, 1989), p. 259.Google Scholar
36. Pickering, M.A., Taylor, R.L., Keeley, J. and Graves, G., Nucl. Instrum. Methods in Phys. Res. A291 (1990), 95.Google Scholar
37. Collins, A., Keeley, J., Pickering, M.A. and Taylor, R.L., Mat. Res. Soc. Symp. Proc. 168 (1990), 193.Google Scholar
38. Pickering, M.A., Taylor, R.L., Keeley, J. T. and Graves, G., SPIE Proc. 1118 (1989) 2.Google Scholar
39. Goela, J.S., Pickering, M.A., Taylor, R.L., Murray, B.W. and Lompado, A., SPIE Proc. 1330 (1990), 25.Google Scholar
40. Goela, J.S., Pickering, M.A., Taylor, R.L., Murray, B.W. and Lompado, A., Applied Optics 30 (22) (1991), 3166.Google Scholar
41. Goela, J.S. and Taylor, R.L., SPIE Proc. 1118 (1989), 14.CrossRefGoogle Scholar
42. Rice, R.W., Freiman, S.W. and Becker, P.F., J. Am. Ceram. Soc. 64(6), 1981, 345.Google Scholar
43. Emmanuel, A. and Pollock, H.M., J. Electrochem. Soc.: Solid State Sci. Tech. 12 (1973), 1586.Google Scholar
44. Wright, P.J., Cockayne, B., Cattell, A.F., Dean, P.J. and Pitt, A.D., J. Crystallogr. Growth 59 (1982), 155.Google Scholar
45. Olsen, L.C., Bohara, R.C. and Barton, D.L., Appl. Phys. Lett. 34 (1979), 528.Google Scholar
46. Besomi, P. and Wessels, B.W., Appl. Phys. Lett. 37 (1980), 955.Google Scholar
47. Wright, P.J. and Cockayne, B., J. Crystallogr. Growth 59 (1982), 148.Google Scholar
48. Goela, J.S. and Taylor, R.L., Appl. Phys. Lett. 51 (1987), 928.CrossRefGoogle Scholar
49. Stinton, D.P., Lockey, W.J., Lauf, R.J. and Besmann, T.M., Ceram. Engng. Sci. Proc. 5 (1984), 668.Google Scholar
50. Hayaashi, S., Hirai, T., Hiraga, K. and Hira-Bayashi, M., J. Mater. Sci. 17 (1982), 3336.Google Scholar
51. Hirai, T. and Hayashi, S., J. Mater. Sci. 17 (1982), 1320.CrossRefGoogle Scholar
52. Berman, R., Proc. Phys. Soc. LXV, 12–A (1982), 1029.Google Scholar
53. Collins, A.K., Pickering, M.A. and Taylor, R.L., J. Appl. Phys. 68(12), (1990), 6510.Google Scholar
54. Singh, S., Potopowicz, J.R., Van Witert, L.G. and Wemple, S.H., Appl. Phys. Lett. 19, 53 (1973).Google Scholar
55. Bloem, J. and Giling, L.J., “Mechanism of the Chemical Vapor Deposition of Silicon,” in Current Topics in Material Science Vol.1, ed. Kaldis, E. (North Holland, 1978, p. 147.Google Scholar
56. Anthony, F.M. and Hopkins, A.K., in SPIE Proc., 297 (1981), 196.CrossRefGoogle Scholar
57. Maguire, E.A., Dionesotes, N.T. and Gentilman, R.L., Fabrication of Large Mirror Substrates by Chemical Vapor Deposition (Air Force Wright Aeronautical Laboratories, Rept. No. AFWAL-TR-86-4128, Raytheon Research Division, Rept. No. RAY/RD/M-4410, December 1986).Google Scholar
58. Goela, J.S. and Taylor, R.L., J. Am. Cer. Soc. 72(9), (1989) 1747.Google Scholar
59. Goela, J.S. and Taylor, R.L., Appl. Phys. Lett., 54(25), (1989), 2512.Google Scholar
60. Goela, J.S. and Taylor, R.L., SPIE Proc., 1062 (1989), 37.Google Scholar
61. Goela, J.S. and Taylor, R.L., SPIE Proc., 1047 (1989), 198.Google Scholar
62. Goela, J.S. and Taylor, R.L., Polycrystalline Silicon Improved Materials Property Data Base for Cooled Laser Mirrors (Air Force Weight Aeronautical Laboratories, Rept. No. AFWAL-TR-86-4131, CVD Incorporated, Rept. No. TR-031, March 1987).Google Scholar
63. Goela, J.S. and Taylor, R.L., Fabrication of Lightweight LIDAR Mirrors (NASA SBIR Phase I Final Report, CVD Incorporated, Technical Rept. No. 9069–1, March 1987).Google Scholar
64. Goela, J.S. and Taylor, R.L., J. Mat. Sci. 23 (1988), 4331.Google Scholar
65. Goela, J.S. and Taylor, R.L., “Post Deposition Process for Improving Optical Properties of CVD-Si,” J. Am. Cer. Soc. (to appear).Google Scholar
66. Lipson, H.G., Appl. Opt. 16 (1977), 2902.Google Scholar
67. Stutius, W., J. Electron. Mater. 10(1) (1981), 95.Google Scholar
68. Miceli, J.J., Gradient Index Optics: Materials, Fabrication and Testing (Ph.D. Thesis, U. Rochester, 1983).Google Scholar