Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:48:11.165Z Has data issue: false hasContentIssue false

Effect of Plasma Modulation in the Glow Discharge Deposition of Amorphous Silicon Films

Published online by Cambridge University Press:  25 February 2011

G. Bruno
Affiliation:
Centro di Studio per Ia Chimica dei Plasmi. Dipartimento diChimica-Universita di Bari, Via G. Amendola 173, 70126 Bar, Italy
P. Capezzuto
Affiliation:
Centro di Studio per Ia Chimica dei Plasmi. Dipartimento diChimica-Universita di Bari, Via G. Amendola 173, 70126 Bar, Italy
G. Cicala
Affiliation:
Centro di Studio per Ia Chimica dei Plasmi. Dipartimento diChimica-Universita di Bari, Via G. Amendola 173, 70126 Bar, Italy
P. Manodoro
Affiliation:
Centro di Studio per Ia Chimica dei Plasmi. Dipartimento diChimica-Universita di Bari, Via G. Amendola 173, 70126 Bar, Italy
Get access

Abstract

The plasma deposition of hydrogenated and fluorinated amorphous silicon (a-Si:H,F) and silicon-germanium alloys (a-Si,Ge:H,F) from SiF4-H2 and SiF 4-GeH 4-H2 mixtures, respectively, has been studied in continuous (CW) and modulated wave (MW) r.f. discharges. It has been found that the period and duty cycle of the modulated wave strongly affect the plasma composition, the surface homogeneity and the material properties. The plasma-phase characterization, performed by time resolved optical emission spectroscopy (TR-OES), supplies arguments on the origin of emitting species and on their formation kinetics. It has been found that H* and SiFx are formed by a direct electron impact process involving the same species in the ground state. In addition, the surface homogeneity and some material properties are strongly improved by plasma modulation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mackenzie, K.D., Burnett, J.H., Eggert, J.R., Li, Y.M., and Paul, W.; Phys. Rev. B 38, 6120 (1988).Google Scholar
2. Ebihara, K. and Maeda, S., J. Appl. Phys. 57, 2482 (1985).Google Scholar
3. Overzet, L.J. and Verdeyen, J.T., Appl. Phys. Lett. 48, 695 (1986).Google Scholar
4. Cicala, G., Flamm, D.L., lbbotson, D.E. and Mucha, J.A., in Plasma Surface Interactions and Proc. Mat., edited by Auciello, O., Gras-Marti, A., Valles-Abaca, J.A. and Flamm, D.L., NATO ASI-Series, vol. 176 (Kluwer Acad. Pub. 1990), p.171.Google Scholar
5. Yoshida, T., Ichikawa, Y. and Sakai, H., Proc. of.9th European Conf. Photovoltaic Solar Energy, Freiburg 1989, p. 1006.Google Scholar
6. Watanabe, Y., Shiratani, M., Kubo, Y., Ogawa, I., and Cgi, S., Appl. Phys. Lett. 53, 1263 (1988).Google Scholar
7. Bruno, G., Capezzuto, P. and Cicala, G., to be published.Google Scholar
8. Bruno, G., Capezzuto, P., Cicala, G. and Cramarossa, F., J.Mater. Res. 4(2) 366 (1989).Google Scholar
9. Bruno, G., Capezzuto, P., Cicala, G., Manodoro, P. and Tassielli, V., IEEE Transactions on Plasma Science 18(4), xxxx(1990).Google Scholar
10. Park, S.K. and Economu, D.J., J. Electroch. Soc. 137, 2103 (1990).Google Scholar
11. Yakowitz, H. and Newbury, D.E., in Proc. 9th Ann. SEM Symp. Chicago: IITRI, 1976, vol. I, p.151.Google Scholar
12. Bruno, G., Capezzuto, P., Cicala, G. and Cramarossa, F., Proc. of 8th Int. Symp. on Plasma Chemistry (Tokyo, Japan, 1987), p. 1434.Google Scholar
13. Timms, P.L., Kent, R.A., Ehlert, T.C. and Margrave, J.L., J. Amer. Chem. Soc. 87, 2824 (1965).Google Scholar