Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-06T09:52:07.938Z Has data issue: false hasContentIssue false

The Effect of Nitrogen Implantation on Martensite in 304 Stainless Steel

Published online by Cambridge University Press:  15 February 2011

R. G. Vardiman
Affiliation:
U. S. Naval Research Laboratory, Washington, DC 20375
R. N. Bolster
Affiliation:
U. S. Naval Research Laboratory, Washington, DC 20375
I. L. Singer
Affiliation:
U. S. Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

Martensite will form in austenitic 304 stainless steel when it is deformed. Transmission electron microscope studies show that nitrogen ion implantation causes a reversion of the martensite to austenite. Specimens containing martensite resulting from fine surface polishing and heavy rolling are examined. The transformation is shown not to occur because of temperature increases during implantation. The effect is related to recent wear results in 304 stainless steel.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Handbook of Stainless Steels, eds. Peckner, D. and Bernstein, I. M. (McGraw-Hill, N.Y., 1977), ch. 4.Google Scholar
2.Hanninen, H. and Hakarainen, T., Corrosion 36, 47 (1980).Google Scholar
3.Kamide, H. and Sugarawa, H., Corrosion 35, 456 (1979).Google Scholar
4.Hsu, K. L., Ahn, T. M. and Rigney, D. A., Wear 60, 13 (1980).Google Scholar
5.Bykov, V. N., Troyan, V. A., Zdrovtseva, G. G. and Khaimovich, V. S., Phys. Stat. Sol. (a) 32, 53 (1975).Google Scholar
6.Johnson, E., Wohlenberg, T., Grant, W. A., Hansen, P. and Chadderton, L. T., J. Microscopy 116, 77 (1979).Google Scholar
7.Johnson, E., Wohlenberg, T. and Grant, W. A., Phase Trans. 1, 23 (1979).Google Scholar
8.Pavlov, P. V., Zorin, E. I., Tetelbaum, D. I., Lesnikov, V. P., Ryzhkov, G. M. and Pavlov, A. V., Phys. Stat. Sol. (a) 19, 373 (1973).Google Scholar
9.Skokan, M. R., Skelton, E. F. and Cukauskas, E., J. Phys. Chem. Sol. 41, 977 (1980).Google Scholar
10.Johnson, E., Littmark, U., Johansen, A. and Christodoulides, C., Report No. 81–07, ISSN 0106–7222, H. C. Orsled Institute, Copenhagen (1981).Google Scholar
11.Bolster, R. N. and Singer, I. L., Appl. Phys. Lett. 36, 208 (1980).Google Scholar
12.Bolster, R. N. and Singer, I. L., ASLE Trans. 24, 526 (1981).Google Scholar
13.Singer, I. L. and Murday, J. S., J. Vac. Sci. Tech. 17, 327 (1980).Google Scholar
14.Singer, I. L., ibid, 18, 175 (1981).Google Scholar
15.Manning, I. and Mueller, G. P., Comp. Phys. Commun. 7, 85 (1974).Google Scholar
16.Schulz, F. and Wittmaak, K., Rad. Effects 29, 31 (1976).Google Scholar
17.Reed, R. P., Acta Met. 10, 865 (1962).Google Scholar